RESUMEN
BACKGROUND: Sequencing of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral genome from patient samples is an important epidemiological tool for monitoring and responding to the pandemic, including the emergence of new mutations in specific communities. METHODS: SARS-CoV-2 genomic sequences were generated from positive samples collected, along with epidemiological metadata, at a walk-up, rapid testing site in the Mission District of San Francisco, California during 22 November to 1 December, 2020, and 10-29 January 2021. Secondary household attack rates and mean sample viral load were estimated and compared across observed variants. RESULTS: A total of 12 124 tests were performed yielding 1099 positives. From these, 928 high-quality genomes were generated. Certain viral lineages bearing spike mutations, defined in part by L452R, S13I, and W152C, comprised 54.4% of the total sequences from January, compared to 15.7% in November. Household contacts exposed to the "California" or "West Coast" variants (B.1.427 and B.1.429) were at higher risk of infection compared to household contacts exposed to lineages lacking these variants (0.36 vs 0.29, risk ratio [RR] = 1.28; 95% confidence interval [CI]: 1.00-1.64). The reproductive number was estimated to be modestly higher than other lineages spreading in California during the second half of 2020. Viral loads were similar among persons infected with West Coast versus non-West Coast strains, as was the proportion of individuals with symptoms (60.9% vs 64.3%). CONCLUSIONS: The increase in prevalence, relative household attack rates, and reproductive number are consistent with a modest transmissibility increase of the West Coast variants. Summary: We observed a growing prevalence and modestly elevated attack rate for "West Coast" severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in a community testing setting in San Francisco during January 2021, suggesting its modestly higher transmissibility.
Asunto(s)
COVID-19 , SARS-CoV-2 , Genómica , Humanos , Incidencia , San Francisco/epidemiologíaRESUMEN
The Plasmodium proteasome is an emerging antimalarial target due to its essential role in all the major life cycle stages of the parasite and its contribution to the establishment of resistance to artemisinin (ART)-based therapies. However, because of a similarly essential role for the host proteasome, the key property of any antiproteasome therapeutic is selectivity. Several parasite-specific proteasome inhibitors have recently been reported, however, their selectivity must be improved to enable clinical development. Here we describe screening of diverse libraries of non-natural synthetic fluorogenic substrates to identify determinants at multiple positions on the substrate that produce enhanced selectivity. We find that selection of an optimal electrophilic "warhead" is essential to enable high selectivity that is driven by the peptide binding elements on the inhibitor. We also find that host cell toxicity is dictated by the extent of coinhibition of the human ß2 and ß5 subunits. Using this information, we identify compounds with over 3 orders of magnitude selectivity for the parasite enzyme. Optimization of the pharmacological properties resulted in molecules that retained high potency and selectivity, were soluble, sufficiently metabolically stable and orally bioavailable. These molecules are highly synergistic with ART and can clear parasites in a mouse model of infection, making them promising leads as antimalarial drugs.
Asunto(s)
Artemisininas/farmacología , Plasmodium falciparum/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Artemisininas/química , Relación Dosis-Respuesta a Droga , Estructura Molecular , Inhibidores de Proteasoma/química , Relación Estructura-ActividadRESUMEN
The 2-aminopyridine MMV048 was the first drug candidate inhibiting Plasmodium phosphatidylinositol 4-kinase (PI4K), a novel drug target for malaria, to enter clinical development. In an effort to identify the next generation of PI4K inhibitors, the series was optimized to improve properties such as solubility and antiplasmodial potency across the parasite life cycle, leading to the 2-aminopyrazine UCT943. The compound displayed higher asexual blood stage, transmission-blocking, and liver stage activities than MMV048 and was more potent against resistant Plasmodium falciparum and Plasmodium vivax clinical isolates. Excellent in vitro antiplasmodial activity translated into high efficacy in Plasmodium berghei and humanized P. falciparum NOD-scid IL-2Rγ null mouse models. The high passive permeability and high aqueous solubility of UCT943, combined with low to moderate in vivo intrinsic clearance, resulted in sustained exposure and high bioavailability in preclinical species. In addition, the predicted human dose for a curative single administration using monkey and dog pharmacokinetics was low, ranging from 50 to 80 mg. As a next-generation Plasmodium PI4K inhibitor, UCT943, based on the combined preclinical data, has the potential to form part of a single-exposure radical cure and prophylaxis (SERCaP) to treat, prevent, and block the transmission of malaria.
RESUMEN
Together with vector control, chemotherapy is an essential tool for the control of visceral leishmaniasis (VL), but its efficacy is jeopardized by growing resistance and treatment failure against first-line drugs. To delay the emergence of resistance, the use of drug combinations of existing antileishmanial agents has been tested systematically in clinical trials for the treatment of visceral leishmaniasis (VL). In vitro, Leishmania donovani promastigotes are able to develop experimental resistance to several combinations of different antileishmanial drugs after 10 weeks of drug pressure. Using an untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics approach, we identified metabolic changes in lines that were experimentally resistant to drug combinations and their respective single-resistant lines. This highlighted both collective metabolic changes (found in all combination therapy-resistant [CTR] lines) and specific ones (found in certain CTR lines). We demonstrated that single-resistant and CTR parasite cell lines show distinct metabolic adaptations, which all converge on the same defensive mechanisms that were experimentally validated: protection against drug-induced and external oxidative stress and changes in membrane fluidity. The membrane fluidity changes were accompanied by changes in drug uptake only in the lines that were resistant against drug combinations with antimonials, and surprisingly, drug accumulation was higher in these lines. Together, these results highlight the importance and the central role of protection against oxidative stress in the different resistant lines. Ultimately, these phenotypic changes might interfere with the mode of action of all drugs that are currently used for the treatment of VL and should be taken into account in drug development.
Asunto(s)
Antiparasitarios/farmacología , Resistencia a Medicamentos/efectos de los fármacos , Leishmania donovani/efectos de los fármacos , Adaptación Fisiológica , Animales , Membrana Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , ADN Protozoario/genética , Combinación de Medicamentos , Resistencia a Medicamentos/genética , Leishmania donovani/genética , Leishmania donovani/metabolismo , Espectrometría de Masas , Fluidez de la Membrana/efectos de los fármacos , Metabolómica , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismoAsunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , Proteínas de la Nucleocápside de Coronavirus/genética , Polimorfismo de Nucleótido Simple/genética , Proteínas Viroporinas/genética , Sustitución de Aminoácidos/genética , Humanos , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Sensibilidad y EspecificidadRESUMEN
Antimonial (sodium stibogluconate, SSG) resistance and differentiation have been shown to be closely linked in Leishmania donovani, with SSG-resistant strains showing an increased capacity to generate infectious (metacyclic) forms. This is the first untargeted LC-MS metabolomics study which integrated both phenomena in one experimental design and provided insights into metabolic differences between three clinical L. donovani strains with a similar genetic background but different SSG-susceptibilities. We performed this analysis at different stages during promastigote growth and in the absence or presence of drug pressure. When comparing SSG-resistant and SSG-sensitive strains, a number of metabolic changes appeared to be constitutively present in all growth stages, pointing towards a clear link with SSG-resistance, whereas most metabolic changes were only detected in the stationary stage. These changes reflect the close intertwinement between SSG-resistance and an increased metacyclogenesis in resistant parasites. The metabolic changes suggest that SSG-resistant parasites have (i) an increased capacity for protection against oxidative stress; (ii) a higher fluidity of the plasma membrane; and (iii) a metabolic survival kit to better endure infection. These changes were even more pronounced in a resistant strain kept under Sb(III) drug pressure.
Asunto(s)
Adaptación Fisiológica , Gluconato de Sodio Antimonio/farmacología , Antiprotozoarios/farmacología , Leishmania donovani/metabolismo , Diferenciación Celular , Membrana Celular/fisiología , Cromatografía Liquida , Resistencia a Medicamentos , Humanos , Leishmania donovani/efectos de los fármacos , Leishmania donovani/genética , Leishmania donovani/crecimiento & desarrollo , Leishmaniasis Visceral/parasitología , Espectrometría de Masas , Fluidez de la Membrana , Metabolómica , Estrés Oxidativo , Fenotipo , Transducción de SeñalRESUMEN
Visceral leishmaniasis is a potentially fatal disease endemic to large parts of Asia and Africa, primarily caused by the protozoan parasite Leishmania donovani. Here, we report a high-quality reference genome sequence for a strain of L. donovani from Nepal, and use this sequence to study variation in a set of 16 related clinical lines, isolated from visceral leishmaniasis patients from the same region, which also differ in their response to in vitro drug susceptibility. We show that whole-genome sequence data reveals genetic structure within these lines not shown by multilocus typing, and suggests that drug resistance has emerged multiple times in this closely related set of lines. Sequence comparisons with other Leishmania species and analysis of single-nucleotide diversity within our sample showed evidence of selection acting in a range of surface- and transport-related genes, including genes associated with drug resistance. Against a background of relative genetic homogeneity, we found extensive variation in chromosome copy number between our lines. Other forms of structural variation were significantly associated with drug resistance, notably including gene dosage and the copy number of an experimentally verified circular episome present in all lines and described here for the first time. This study provides a basis for more powerful molecular profiling of visceral leishmaniasis, providing additional power to track the drug resistance and epidemiology of an important human pathogen.
Asunto(s)
Resistencia a Medicamentos/genética , Dosificación de Gen , Genes Protozoarios , Leishmania donovani/genética , Leishmaniasis Visceral/genética , Secuencia de Bases , Humanos , Leishmania donovani/metabolismo , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/epidemiología , Leishmaniasis Visceral/metabolismo , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Especificidad de la EspecieRESUMEN
BACKGROUND: Miltefosine (MIL), the only oral drug for visceral leishmaniasis (VL), is currently the first-line therapy in the VL elimination program of the Indian subcontinent. Given the paucity of anti-VL drugs and the looming threat of resistance, there is an obvious need for close monitoring of clinical efficacy of MIL. METHODS: In a cohort study of 120 VL patients treated with MIL in Nepal, we monitored the clinical outcomes up to 12 months after completion of therapy and explored the potential role of drug compliance, parasite drug resistance, and reinfection. RESULTS: The initial cure rate was 95.8% (95% confidence interval [CI], 92.2-99.4) and the relapse rate at 6 and 12 months was 10.8% (95% CI, 5.2-16.4) and 20.0% (95% CI, 12.8-27.2) , respectively. No significant clinical risk factors of relapse apart from age <12 years were found. Parasite fingerprints of pretreatment and relapse bone marrow isolates within 8 patients were similar, suggesting that clinical relapses were not due to reinfection with a new strain. The mean promastigote MIL susceptibility (50% inhibitory concentration) of isolates from definite cures was similar to that of relapses. Although more tolerant strains were observed, parasite resistance, as currently measured, is thus not likely involved in MIL treatment failure. Moreover, MIL blood levels at the end of treatment were similar in cured and relapsed patients. CONCLUSIONS: Relapse in one-fifth of the MIL-treated patients observed in our study is an alarming signal for the VL elimination campaign, urging for further review and cohort monitoring.
Asunto(s)
Antiprotozoarios/administración & dosificación , Leishmaniasis Visceral/tratamiento farmacológico , Fosforilcolina/análogos & derivados , Adolescente , Adulto , Niño , Preescolar , Resistencia a Medicamentos , Femenino , Humanos , Estimación de Kaplan-Meier , Leishmania donovani/efectos de los fármacos , Leishmania donovani/aislamiento & purificación , Leishmaniasis Visceral/epidemiología , Leishmaniasis Visceral/parasitología , Masculino , Nepal/epidemiología , Carga de Parásitos , Cooperación del Paciente , Fosforilcolina/administración & dosificación , Estudios Prospectivos , Recurrencia , Insuficiencia del TratamientoRESUMEN
Drug-resistant microorganisms (DRMs) are generally thought to suffer from a fitness cost associated with their drug-resistant trait, inflicting them a disadvantage when the drug pressure reduces. However, Leishmania resistant to pentavalent antimonies shows traits of a higher fitness compared to its sensitive counterparts. This is likely due the combination of an intracellular pathogen and a drug that targets the parasite's general defense mechanisms while at the same time stimulating the host's immune system, resulting in a DRM that is better adapted to withstand the host's immune response. This review aims to highlight how this fitter DRM has emerged and how it might affect the control of leishmaniasis. However, this unprecedented example of fitter antimony-resistant Leishmania donovani is also of significance for the control of other microorganisms, warranting more caution when applying or designing drugs that attack their general defense mechanisms or interact with the host's immune system.
Asunto(s)
Antimonio/farmacología , Antiprotozoarios/farmacología , Resistencia a Medicamentos , Leishmania donovani/efectos de los fármacos , Leishmania donovani/fisiología , Humanos , Leishmania donovani/aislamiento & purificación , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/parasitologíaRESUMEN
Leishmaniasis, like other neglected diseases is characterized by a small arsenal of drugs for its control. To safeguard the efficacy of current drugs and guide the development of new ones it is thus of utmost importance to acquire a deep understanding of the phenomenon of drug resistance and its link with treatment outcome. We discuss here how (post-)genomic approaches may contribute to this purpose. We highlight the need for a clear definition of the phenotypes under consideration: innate and acquired resistance versus treatment failure. We provide a recent update of our knowledge on the Leishmania genome structure and dynamics, and compare the contribution of targeted and untargeted methods for the understanding of drug resistance and show their limits. We also present the main assays allowing the experimental validation of the genes putatively involved in drug resistance. The importance of analysing information downstream of the genome is stressed and further illustrated by recent metabolomics findings. Finally, the attention is called onto the challenges for implementing the acquired knowledge to the benefit of the patients and the population at risk.
Asunto(s)
Antiprotozoarios/farmacología , Resistencia a Medicamentos/genética , Genoma de Protozoos/genética , Leishmania/genética , Leishmaniasis/parasitología , Fosforilcolina/análogos & derivados , Animales , Genómica , Humanos , Leishmania/efectos de los fármacos , Leishmaniasis/tratamiento farmacológico , Metabolómica , Fenotipo , Fosforilcolina/farmacologíaRESUMEN
The current standard to assess pentavalent antimonial (SSG) susceptibility of Leishmania is a laborious in vitro assay of which the result has little clinical value because SSG-resistant parasites are also found in SSG-cured patients. Candidate genetic markers for clinically relevant SSG-resistant parasites identified by full genome sequencing were here validated on a larger set of clinical strains. We show that 3 genomic locations suffice to specifically detect the SSG-resistant parasites found only in patients experiencing SSG treatment failure. This finding allows the development of rapid assays to monitor the emergence and spread of clinically relevant SSG-resistant Leishmania parasites.
Asunto(s)
Gluconato de Sodio Antimonio/uso terapéutico , Antiprotozoarios/uso terapéutico , Leishmania donovani/genética , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/parasitología , Animales , ADN Protozoario/química , ADN Protozoario/genética , Resistencia a Medicamentos , Marcadores Genéticos/genética , Genoma de Protozoos , Haplotipos , Humanos , India , Ratones , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Valor Predictivo de las Pruebas , Sensibilidad y EspecificidadRESUMEN
Next-generation sequencing technology has revolutionised pathogen surveillance over the last two decades. However, the benefits are not equitably distributed, with developing countries lagging far behind in acquiring the required technology and analytical capacity. Recent declines in the cost associated with sequencing-equipment and running consumables have created an opportunity for broader adoption. During the COVID-19 pandemic, rapid diagnostics development and DNA sequencing revolutionised the ability to diagnose and sequence SARS-CoV-2 rapidly. Socioeconomic inequalities substantially impact the ability to sequence SARS-CoV-2 strains and undermine a developing country's pandemic preparedness. Low- and middle-income countries face additional challenges in establishing, maintaining and expanding genomic surveillance. We present our experience of establishing a genomic surveillance system at the Aga Khan University, Karachi, Pakistan. Despite being at a leading health sciences research institute in the country, we encountered significant challenges. These were related to collecting standardised contextual data for SARS-CoV-2 samples, procuring sequencing reagents and consumables, and challenges with library preparation, sequencing and submission of high-quality SARS-CoV-2 genomes. Several technical roadblocks ensued during the implementation of the genomic surveillance framework, which were resolved in collaboration with our partners. High-quality genome sequences were then deposited on open-access platforms per the best practices. Subsequently, these efforts culminated in deploying Pakistan's first SARS-CoV-2 phyllo surveillance map as a Nextstrain build. Our experience offers lessons for the successful development of Genomic Surveillance Infrastructure in resource-limited settings struck by a pandemic.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , Genómica , Pakistán/epidemiologíaRESUMEN
Metagenomic next-generation sequencing (mNGS) is the process of sequencing all genetic material in a biological sample. The technique is growing in popularity with myriad applications including outbreak investigation, biosurveillance, and pathogen detection in clinical samples. However, mNGS programs are costly to build and maintain, and additional obstacles faced by low- and middle-income countries (LMICs) may further widen global inequities in mNGS capacity. Over the past two decades, several important infectious disease outbreaks have highlighted the importance of establishing widespread sequencing capacity to support rapid disease detection and containment at the source. Using lessons learned from the COVID-19 pandemic, LMICs can leverage current momentum to design and build sustainable mNGS programs, which would form part of a global surveillance network crucial to the elimination of infectious diseases.
RESUMEN
Transmission dynamics and the maintenance of mammarenaviruses in nature are poorly understood. Using metagenomic next-generation sequencing (mNGS) and RT-PCR, we investigated the presence of mammarenaviruses and co-infecting helminths in various tissues of 182 Mastomys natalensis rodents and 68 other small mammals in riverine and non-riverine habitats in Zambia. The Luna virus (LUAV) genome was the only mammarenavirus detected (7.7%; 14/182) from M. natalensis. Only one rodent from the non-riverine habitat was positive, while all six foetuses from one pregnant rodent carried LUAV. LUAV-specific mNGS reads were 24-fold higher in semen than in other tissues from males. Phylogenetically, the viruses were closely related to each other within the LUAV clade. Helminth infections were found in 11.5% (21/182) of M. natalensis. LUAV-helminth co-infections were observed in 50% (7/14) of virus-positive rodents. Juvenility (OR = 9.4; p = 0.018; 95% CI: 1.47-59.84), nematodes (OR = 15.5; p = 0.001; 95% CI: 3.11-76.70), cestodes (OR = 10.8; p = 0.025; 95% CI: 1.35-86.77), and being male (OR = 4.6; p = 0.036; 95% CI: 1.10-18.90) were associated with increased odds of LUAV RNA detection. The role of possible sexual and/or congenital transmission in the epidemiology of LUAV infections in rodents requires further study, along with the implications of possible helminth co-infection.
RESUMEN
We identify the Plasmodium falciparum acetyl-coenzyme A synthetase (PfAcAS) as a druggable target, using genetic and chemical validation. In vitro evolution of resistance with two antiplasmodial drug-like compounds (MMV019721 and MMV084978) selects for mutations in PfAcAS. Metabolic profiling of compound-treated parasites reveals changes in acetyl-CoA levels for both compounds. Genome editing confirms that mutations in PfAcAS are sufficient to confer resistance. Knockdown studies demonstrate that PfAcAS is essential for asexual growth, and partial knockdown induces hypersensitivity to both compounds. In vitro biochemical assays using recombinantly expressed PfAcAS validates that MMV019721 and MMV084978 directly inhibit the enzyme by preventing CoA and acetate binding, respectively. Immunolocalization studies reveal that PfAcAS is primarily localized to the nucleus. Functional studies demonstrate inhibition of histone acetylation in compound-treated wild-type, but not in resistant parasites. Our findings identify and validate PfAcAS as an essential, druggable target involved in the epigenetic regulation of gene expression.
Asunto(s)
Acetato CoA Ligasa/antagonistas & inhibidores , Antimaláricos/farmacología , Inhibidores Enzimáticos/farmacología , Malaria/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Acetato CoA Ligasa/metabolismo , Antimaláricos/química , Inhibidores Enzimáticos/química , Humanos , Malaria/metabolismo , Modelos Moleculares , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/enzimologíaRESUMEN
Widespread Plasmodium falciparum resistance to first-line antimalarials underscores the vital need to develop compounds with novel modes of action and identify new druggable targets. Here, we profile five compounds that potently inhibit P. falciparum asexual blood stages. Resistance selection studies with three carboxamide-containing compounds, confirmed by gene editing and conditional knockdowns, identify point mutations in the parasite transporter ABCI3 as the primary mediator of resistance. Selection studies with imidazopyridine or quinoline-carboxamide compounds also yield changes in ABCI3, this time through gene amplification. Imidazopyridine mode of action is attributed to inhibition of heme detoxification, as evidenced by cellular accumulation and heme fractionation assays. For the copy-number variation-selecting imidazopyridine and quinoline-carboxamide compounds, we find that resistance, manifesting as a biphasic concentration-response curve, can independently be mediated by mutations in the chloroquine resistance transporter PfCRT. These studies reveal the interconnectedness of P. falciparum transporters in overcoming drug pressure in different parasite strains.
Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Malaria Falciparum , Parásitos , Quinolinas , Transportadoras de Casetes de Unión a ATP/genética , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Hemo , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Proteínas de Transporte de Membrana/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Quinolinas/farmacologíaRESUMEN
Science education and research have the potential to drive profound change in low- and middle-income countries (LMICs) through encouraging innovation, attracting industry, and creating job opportunities. However, in LMICs, research capacity is often limited, and acquisition of funding and access to state-of-the-art technologies is challenging. The Alliance for Global Health and Science (the Alliance) was founded as a partnership between the University of California, Berkeley (USA) and Makerere University (Uganda), with the goal of strengthening Makerere University's capacity for bioscience research. The flagship program of the Alliance partnership is the MU/UCB Biosciences Training Program, an in-country, hands-on workshop model that trains a large number of students from Makerere University in infectious disease and molecular biology research. This approach nucleates training of larger and more diverse groups of students, development of mentoring and bi-directional research partnerships, and support of the local economy. Here, we describe the project, its conception, implementation, challenges, and outcomes of bioscience research workshops. We aim to provide a blueprint for workshop implementation, and create a valuable resource for bioscience research capacity strengthening in LMICs.
Asunto(s)
Países en Desarrollo , Salud Global , Creación de Capacidad , Humanos , Pobreza , Estudiantes , UniversidadesRESUMEN
New antimalarial therapeutics are needed to ensure that malaria cases continue to be driven down, as both emerging parasite resistance to frontline chemotherapies and mosquito resistance to current insecticides threaten control programmes. Plasmodium, the apicomplexan parasite responsible for malaria, causes disease pathology through repeated cycles of invasion and replication within host erythrocytes (the asexual cycle). Antimalarial drugs primarily target this cycle, seeking to reduce parasite burden within the host as fast as possible and to supress recrudescence for as long as possible. Intense phenotypic drug screening efforts have identified a number of promising new antimalarial molecules. Particularly important is the identification of compounds with new modes of action within the parasite to combat existing drug resistance and suitable for formulation of efficacious combination therapies. Here we detail the antimalarial properties of DDD01034957-a novel antimalarial molecule which is fast-acting and potent against drug resistant strains in vitro, shows activity in vivo, and possesses a resistance mechanism linked to the membrane transporter PfABCI3. These data support further medicinal chemistry lead-optimization of DDD01034957 as a novel antimalarial chemical class and provide new insights to further reduce in vivo metabolic clearance.
Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos/efectos de los fármacos , Malaria/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Animales , Antimaláricos/química , Eritrocitos/parasitología , Interacciones Huésped-Parásitos/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Malaria/parasitología , Ratones , Estructura Molecular , Plasmodium/efectos de los fármacos , Plasmodium/parasitología , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/parasitología , Plasmodium falciparum/fisiología , Especificidad de la EspecieRESUMEN
BACKGROUND: Sequencing of the SARS-CoV-2 viral genome from patient samples is an important epidemiological tool for monitoring and responding to the pandemic, including the emergence of new mutations in specific communities. METHODS: SARS-CoV-2 genomic sequences were generated from positive samples collected, along with epidemiological metadata, at a walk-up, rapid testing site in the Mission District of San Francisco, California during November 22-December 2, 2020 and January 10-29, 2021. Secondary household attack rates and mean sample viral load were estimated and compared across observed variants. RESULTS: A total of 12,124 tests were performed yielding 1,099 positives. From these, 811 high quality genomes were generated. Certain viral lineages bearing spike mutations, defined in part by L452R, S13I, and W152C, comprised 54.9% of the total sequences from January, compared to 15.7% in November. Household contacts exposed to "West Coast" variants were at higher risk of infection compared to household contacts exposed to lineages lacking these variants (0.357 vs 0.294, RR=1.29; 95% CI:1.01-1.64). The reproductive number was estimated to be modestly higher than other lineages spreading in California during the second half of 2020. Viral loads were similar among persons infected with West Coast versus non-West Coast strains, as was the proportion of individuals with symptoms (60.9% vs 64.1%). CONCLUSIONS: The increase in prevalence, relative household attack rates, and reproductive number are consistent with a modest transmissibility increase of the West Coast variants; however, additional laboratory and epidemiological studies are required to better understand differences between these variants. SUMMARY: We observed a growing prevalence and elevated attack rate for "West Coast" SARS-CoV-2 variants in a community testing setting in San Francisco during January 2021, suggesting its modestly higher transmissibility.