Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biomacromolecules ; 24(8): 3498-3509, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37167224

RESUMEN

This article reports a new family of functional side-chain phenolic polymers derived from lignin monomers, displaying a combination of properties that are usually mutually exclusive within a single material. This includes a well-defined molecular structure, transparency, antioxidant activity, and antistatic properties. Our design strategy is based on the lignin-derived bioaromatic monomer dihydroconiferyl alcohol (DCA), a promising and yet largely unexplored asymmetrical diol bearing one aliphatic and one phenolic hydroxyl group. A lipase-catalyzed (meth)acrylation protocol was developed to selectively functionalize the aliphatic hydroxy group of DCA while preserving its phenolic group responsible for its radical scavenging properties. The resulting mono-(meth)acrylated monomers were then directly copolymerized using reversible addition-fragmentation chain-transfer (RAFT) polymerization without any protection of the phenolic side chains. Kinetics studies revealed that, under select conditions, these unprotected phenolic groups surprisingly did not inhibit the radical polymerization and lead to polymers with defined molar masses, low dispersities, and block copolymers. Finally, applications of these new radical scavenging polymers were demonstrated using an antioxidant assay and antistatic experiments. This research opens the door to the direct incorporation of natural antioxidants within the synthetic polymer backbones, increasing the biobased content and limiting the leaching of potentially harmful additives.


Asunto(s)
Antioxidantes , Metanfetamina , Lignina , Cinética , Polímeros
2.
Biomacromolecules ; 23(8): 3174-3185, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35792377

RESUMEN

The use of lignin as a functional additive has long been a promising topic in both industry and academia, but the development of such systems is still limited by the considerable challenges posed by the incompatibility of lignin with common polymers. Herein, we designed modified silicone (MS) sealants with enhanced UV and thermal stability by incorporating molecularly engineered lignin bio-additives while establishing robust design principles to finely adjust the morphology of such blends by tailoring the molecular structures of lignin fractions. To that end, we first constructed a library of lignin fractions with various molecular weights (obtained by fractionating Kraft lignin and by using a lignin model compound) and with several chemical modifications (acetylation, butyrylation, and silylation). The lignin bio-additives were then melt-blended with MS polyethers. The experimental phase diagrams of the resulting blends were established and rationalized with a thermodynamic framework combining Hansen solubility parameters and Flory-Huggins theory, unraveling fascinating insights into the complex solubility behavior of lignin fractions and notably, for the first time, the subtle interplay between molecular weight (entropic effects) and chemical modifications (enthalpic effects). A molecularly optimized lignin additive was then selected to achieve full solubility while providing better thermal stability and UV-blocking properties to the resulting MS material. Overall, this article provides robust design principles for the elaboration of functional biomaterials with optimized morphologies based on rationally engineered lignin fractions.


Asunto(s)
Adhesivos , Lignina , Entropía , Lignina/química , Solubilidad , Termodinámica
3.
Molecules ; 26(11)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34206027

RESUMEN

The utilization of biorefinery lignins as a renewable resource for the production of bio-based chemicals and materials remain a challenge because of the high polysaccharide content of this variety of lignins. This study provides two simple methods; (i) the alkaline hydrolysis-acid precipitation method and (ii) the acid hydrolysis method for the removal of polysaccharides from polymeric biorefinery lignin samples. Both purification strategies are optimized for two different hardwood hydrolysis lignins, HL1 and HL2, containing 15.1% and 10.1% of polysaccharides, respectively. The treated lignins are characterized by polysaccharide content, molecular weight, hydroxyl content, and Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR). Preliminary techno-economic calculations are also carried out for both purification processes to assess the economic potential of these technologies. The results indicate that both protocols could be used for the purification of HL1 and HL2 hydrolysis lignins because of the minimal polysaccharide content obtained in the treated lignins. Nevertheless, from an industrial and economic perspective the acid hydrolysis technology using low acid concentrations and high temperatures is favored over the alkaline hydrolysis-acid precipitation strategy.


Asunto(s)
Lignina/química , Polisacáridos/análisis , Madera/química , Biotecnología , Precipitación Química , Hidrólisis , Peso Molecular , Espectroscopía Infrarroja por Transformada de Fourier
4.
Biomacromolecules ; 21(10): 4135-4148, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-32845140

RESUMEN

Thanks to chemical stabilization, aldehyde-assisted fractionation (AAF) of lignocellulosic biomass has recently emerged as a powerful tool for the production of largely uncondensed lignin. Depolymerization of AAF lignin via ether cleavage provides aromatic monomers at near theoretical yields based on ether cleavage and an oligomeric fraction that remains largely unexploited despite its unique material properties. Here, we present an in-depth analytical characterization of AAF oligomers derived from hardwood and softwood in order to elucidate their molecular structures. These bioaromatic oligomers surpass technical Kraft lignin in terms of purity, solubility, and functionality and thus cannot even be compared to this common feedstock directly for material production. Instead, we performed comparative experiments with Kraft oligomers of similar molecular weight (Mn ∼ 1000) obtained through solvent extraction. These oligomers were then formulated into polyurethane materials. Substantial differences in material properties were observed depending on the amount of lignin, the botanical origin, and the biorefining process (AAF vs Kraft), suggesting new design principles for lignin-derived biopolymers with tailored properties. These results highlight the surprising versatility of AAF oligomers towards the design of new biomaterials and further demonstrate that AAF can enable the conversion of all biomass fractions into value-added products.


Asunto(s)
Lignina , Poliuretanos , Aldehídos , Fraccionamiento Químico
5.
Molecules ; 25(16)2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32823995

RESUMEN

The current climate awareness coupled with increased focus on renewable energy and biobased chemicals have led to an increased demand for such biomass derived products. Electrosynthesis is a relatively new approach that allows a shift from conventional fossil-based chemistry towards a new model of a real sustainable chemistry that allows to use the excess renewable electricity to convert biobased feedstock into base and commodity chemicals. The electrosynthesis approach is expected to increase the production efficiency and minimize negative health for the workers and environmental impact all along the value chain. In this review, we discuss the various electrosynthesis approaches that have been applied on carbohydrate biomass specifically to produce valuable chemicals. The studies on the electro-oxidation of saccharides have mostly targeted the oxidation of the primary alcohol groups to form the corresponding uronic acids, with Au or TEMPO as the active electrocatalysts. The investigations on electroreduction of saccharides focused on the reduction of the aldehyde groups to the corresponding alcohols, using a variety of metal electrodes. Both oxidation and reduction pathways are elaborated here with most recent examples. Further recommendations have been made about the research needs, choice of electrocatalyst and electrolyte as well as upscaling the technology.


Asunto(s)
Fuentes de Energía Bioeléctrica , Biomasa , Carbohidratos/química , Ingeniería Metabólica , Energía Renovable , Biocatálisis , Electricidad , Humanos
6.
Chemphyschem ; 18(22): 3174-3181, 2017 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-28303650

RESUMEN

The enzymatic electrosynthesis of formic acid from the reduction of carbon dioxide (CO2 ) by using formate dehydrogenase (FDH) as a catalyst at the cathode in both its free and immobilized forms was studied in detail in a bioelectrochemical system (BES). The essential role of solubilizing CO2 for its conversion was also studied by adding carbonic anhydrase (CA) to the FDH enzyme in both its free and immobilized forms. FDH alone in the free form showed large variation in the reduction current [(-6.2±3.9) A m-2 ], whereas the immobilized form showed less variation [(-3.8±0.5) A m-2 ] due to increased enzyme stability. The addition of CA with FDH increased the consumption of the current in both forms due to the fact that it allowed rapid dissolution of CO2 , which made it available for the catalytic reaction with FDH. Remarkably, stable consumption of the current was observed throughout the operation if both CA and FDH were immobilized onto the electrode [(-3.9±0.2) A m-2 ]. Product formation by the immobilized enzyme was also continued for three repetitive cycles, which revealed the longevity of the enzyme after immobilization. The recyclability of NADH (NAD=nicotinamide adenine dinucleotide) was also clearly evidenced on the derivative voltammetric signature. Extension of this study for continuous and long-term operation may reveal more possibilities for the rapid capture and conversion of CO2 .


Asunto(s)
Dióxido de Carbono/metabolismo , Anhidrasas Carbónicas/metabolismo , Técnicas Electroquímicas , Enzimas Inmovilizadas/metabolismo , Formiato Deshidrogenasas/metabolismo , Formiatos/metabolismo , Animales , Biocatálisis , Candida/enzimología , Dióxido de Carbono/química , Anhidrasas Carbónicas/química , Bovinos , Electrodos , Enzimas Inmovilizadas/química , Formiato Deshidrogenasas/química , Formiatos/química , Oxidación-Reducción
7.
Faraday Discuss ; 202: 433-449, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28657636

RESUMEN

The recent concept of microbial electrosynthesis (MES) has evolved as an electricity-driven production technology for chemicals from low-value carbon dioxide (CO2) using micro-organisms as biocatalysts. MES from CO2 comprises bioelectrochemical reduction of CO2 to multi-carbon organic compounds using the reducing equivalents produced at the electrically-polarized cathode. The use of CO2 as a feedstock for chemicals is gaining much attention, since CO2 is abundantly available and its use is independent of the food supply chain. MES based on CO2 reduction produces acetate as a primary product. In order to elucidate the performance of the bioelectrochemical CO2 reduction process using different operation modes (batch vs. continuous), an investigation was carried out using a MES system with a flow-through biocathode supplied with 20 : 80 (v/v) or 80 : 20 (v/v) CO2 : N2 gas. The highest acetate production rate of 149 mg L-1 d-1 was observed with a 3.1 V applied cell-voltage under batch mode. While running in continuous mode, high acetate production was achieved with a maximum rate of 100 mg L-1 d-1. In the continuous mode, the acetate production was not sustained over long-term operation, likely due to insufficient microbial biocatalyst retention within the biocathode compartment (i.e. suspended micro-organisms were washed out of the system). Restarting batch mode operations resulted in a renewed production of acetate. This showed an apparent domination of suspended biocatalysts over the attached (biofilm forming) biocatalysts. Long term CO2 reduction at the biocathode resulted in the accumulation of acetate, and more reduced compounds like ethanol and butyrate were also formed. Improvements in the production rate and different biomass retention strategies (e.g. selecting for biofilm forming micro-organisms) should be investigated to enable continuous biochemical production from CO2 using MES. Certainly, other process optimizations will be required to establish MES as an innovative sustainable technology for manufacturing biochemicals from CO2 as a next generation feedstock.


Asunto(s)
Fuentes de Energía Bioeléctrica/microbiología , Dióxido de Carbono/metabolismo , Técnicas Electroquímicas , Biomasa , Dióxido de Carbono/química , Electricidad
8.
Faraday Discuss ; 183: 445-62, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26399888

RESUMEN

In the direction of generating value added chemicals from carbon dioxide (CO2) reduction through microbial electrosynthesis (MES), considering the crucial impact of the electrode material for the biofilm development and electron delivery, an attempt was made in this study to evaluate the efficiency of two different materials as biocathodes and their respective output in terms of electrosynthesis. The electrode material is a key component in the MES process. Several electrodes such as platinum, graphite foil, dimentionally stable anode (DSA) and graphite rod, and VITO-CoRE™ derived electrodes were tested for their suitability for ideal electrode combination in a three electrode cell setup. Bicarbonates (the dissolved form of CO2) was reduced to acetate by a selectively developed biocathode under a mild applied cathodic potential of -400 mV (vs. SHE) in 500 mL of single chamber MES cells operating for more than four months. Among the two electrode combinations evaluated, VITO-CoRE™-PL (VC-IS, plastic inert support) as the cathode and VITO-CoRE™-SS (VC-SS, stainless steel metal support) as the counter electrode showed higher production (4127 mg L(-1)) with a volumetric production rate of 0.569 kg per m(3) per d than the graphite rod (1523 mg L(-1)) with a volumetric production rate of 0.206 kg per m(3) per d. Contrary to the production efficiencies, the coulombic efficiency was higher with the second electrode combination (40.43%) than the first electrode combination (29.91%). Carbon conversion efficiency to acetate was higher for VC-IS (90.6%) than the graphite rod (82.0%).


Asunto(s)
Acetatos/metabolismo , Dióxido de Carbono/metabolismo , Acetatos/química , Dióxido de Carbono/química , Técnicas Electroquímicas , Electrodos , Oxidación-Reducción
9.
ACS Sustain Chem Eng ; 12(23): 8968-8977, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38872958

RESUMEN

Recent scientific advances in the valorization of lignin, through e.g., (partial-)catalytic depolymerization, require equally state-of-the-art approaches for the analysis of the obtained depolymerized lignins (DLs) or lignin bio-oils. The use of chemometrics in combination with infrared (IR) spectroscopy is one avenue to provide rapid access to pertinent lignin parameters, such as molecular weight (MW) characteristics, which typically require analysis via time-consuming size-exclusion methods, or diffusion-ordered NMR spectroscopy. Importantly, MW serves as a marker for the degree of depolymerization (or recondensation) that the lignin has undergone, and thus probing this parameter is essential for the optimization of depolymerization conditions to achieve DLs with desired properties. Here, we show that our ATR-IR-based chemometrics approach used previously for technical lignin analysis can be extended to analyze these more processed, lignin-derived samples as well. Remarkably, also at this lower end of the MW scale, the use of partial least-squares (PLS) regression models well-predicted the MW parameters for a sample set of 57 depolymerized lignins, with relative errors of 9.9-11.2%. Furthermore, principal component analysis (PCA) showed good correspondence with features in the regression vectors for each of the biomass classes (hardwood, herbaceous/grass, and softwood) obtained from PLS-discriminant analysis (PLS-DA). Overall, we show that the IR spectra of DLs are still amenable to chemometric analysis and specifically to rapid, predictive characterization of their MW, circumventing the time-consuming, tedious, and not generally accessible methods typically employed.

10.
Appl Environ Microbiol ; 79(14): 4325-35, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23666325

RESUMEN

Microcosms containing sediment from an aquifer in Cambodia with naturally elevated levels of arsenic in the associated groundwater were used to evaluate the effectiveness of microbially mediated production of iron minerals for in situ As remediation. The microcosms were first incubated without amendments for 28 days, and the release of As and other geogenic chemicals from the sediments into the aqueous phase was monitored. Nitrate or a mixture of sulfate and lactate was then added to stimulate biological Fe(II) oxidation or sulfate reduction, respectively. Without treatment, soluble As concentrations reached 3.9 ± 0.9 µM at the end of the 143-day experiment. However, in the nitrate- and sulfate-plus-lactate-amended microcosms, soluble As levels decreased to 0.01 and 0.41 ± 0.13 µM, respectively, by the end of the experiment. Analyses using a range of biogeochemical and mineralogical tools indicated that sorption onto freshly formed hydrous ferric oxide (HFO) and iron sulfide mineral phases are the likely mechanisms for As removal in the respective treatments. Incorporation of the experimental results into a one-dimensional transport-reaction model suggests that, under conditions representative of the Cambodian aquifer, the in situ precipitation of HFO would be effective in bringing groundwater into compliance with the World Health Organization (WHO) provisional guideline value for As (10 ppb or 0.13 µM), although soluble Mn release accompanying microbial Fe(II) oxidation presents a potential health concern. In contrast, production of biogenic iron sulfide minerals would not remediate the groundwater As concentration below the recommended WHO limit.


Asunto(s)
Arsénico/metabolismo , Bacterias/metabolismo , Compuestos Férricos/metabolismo , Compuestos de Hierro/metabolismo , Contaminantes Químicos del Agua/metabolismo , Bacterias/clasificación , Bacterias/genética , Biodegradación Ambiental , Cambodia , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Agua Subterránea/química , Agua Subterránea/microbiología , Modelos Químicos , Datos de Secuencia Molecular , Filogenia , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo
11.
Chem Soc Rev ; 41(21): 7228-46, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-22885371

RESUMEN

The present critical review aims to portray the principles and theoretical foundations that have been used for the application of electrochemical impedance spectroscopy (EIS) to study electron-transfer mechanisms, mass transfer phenomena and distribution of the heterogeneous properties of microbial electrochemical systems (MXCs). Over the past eight years, the application of this method has allowed major breakthroughs, especially in the field of microbial fuel cells (MFCs); however, it is still most widely extended only to the calculation of internal resistances. The use and interpretation of EIS should greatly improve since the intrinsic knowledge of this field, and efforts and current trends in this field have already allowed its understanding based on rather meaningful physical properties and not only on fitting electrical analogues. From this perspective, the use, analysis and interpretation of EIS applied to the study of MXCs are critically examined. Together with the revision of more than 150 articles directly devoted to this topic, two examples of the correct and improved analysis of EIS data are extensively presented. The first one focuses on the use of graphical methods for improving EIS analysis and the other one concentrates on the elucidation of the constant phase element (CPE) parameters. CPEs have been introduced in equivalent circuit models, sometimes without solid justification or analysis; the effective capacitance has been obtained from CPE parameters, following an unsuitable theory for the case of microbial-electrochemical interfaces. The use of CPE is reviewed in terms of meaningful physical parameters, such as biofilm thickness. The use of a finite-diffusion element is reviewed throughout estimation of accurate values for obtaining the dimensionless numbers, Schmidt and Sherwood, in the context of a dioxygen-reducing-biocathode, under different flow-rate conditions. The use and analysis of EIS in this context are still emerging, but because of the promising potential of MXCs in renewable power generation, wastewater treatment and energy-positive biorefining, among other applications, it becomes necessary to boost our global capacities for the application of EIS-and especially its interpretation-so that we achieve a better understanding and optimization of these systems.


Asunto(s)
Espectroscopía Dieléctrica/métodos , Electroquímica/métodos , Microbiología , Humanos , Cinética
12.
Environ Technol ; 34(13-16): 1935-45, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24350447

RESUMEN

In this study, domestic wastewater was given a second life as dilution medium for concentrated organic waste streams, in particular artificial food waste. A two-step continuous process with first volatile fatty acid (VFA)/hydrogen production and second electricity production in microbial fuel cells (MFCs) was employed. For primary treatment, bioreactors were optimized to produce hydrogen and VFAs. Hydrolysis of the solids and formation of fermentation products and hydrogen was monitored. In the second step, MFCs were operated batch-wise using the effluent rich in VFAs specifically acetic acid from the continuous reactor of the first step. The combined system was able to reduce the chemical oxygen demand load by 90%. The concentration of VFAs was also monitored regularly in the MFCs and showed a decreasing trend over time. Further, the anode potential changed from -500 to OmV vs. Ag/AgCl when the VFAs (especially acetate) were depleted in the system. On feeding the system again with the effluent, the anode potential recovered back to -500 mV vs. Ag/AgCl. Thus, the overall aim of converting chemical energy into electrical energy was achieved with a columbic efficiency of 46% generating 65.33 mA/m2 at a specific cell potential of 148 mV.


Asunto(s)
Fuentes de Energía Bioeléctrica , Ácidos Grasos Volátiles/química , Ácidos Grasos Volátiles/metabolismo , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos , Electricidad , Técnicas Electroquímicas , Ácidos Grasos Volátiles/análisis , Fermentación , Concentración de Iones de Hidrógeno , Eliminación de Residuos Líquidos/instrumentación
13.
Antioxidants (Basel) ; 12(3)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36978906

RESUMEN

Lignin is an abundant and renewable source of phenolic compounds that can be used as natural antioxidants to substitute synthetic, petroleum-based alternatives. The development of lignin depolymerization techniques has improved the accessibility of low-molecular-weight phenolic fractions with enhanced antioxidant activity compared to native lignin. The selective esterification of the aliphatic OH groups in these compounds is necessary in order to increase their compatibility with hydrophobic product matrixes, while preserving their antioxidant capacity. In the present work, lipase was chosen as a selective catalyst for the esterification of the monolignol dihydroconiferyl alcohol (DCA), in order to target the esterification of aliphatic OHs without modifying the aromatic groups. The reaction was studied under solvent-assisted and solvent-free conditions, using different fatty acids and substrate ratios. A product yield of 97% could be obtained after 24 h in a solvent-assisted reaction with 2 molar equivalents of fatty acid, or after 3 h in a solvent-free reaction with 10 molar equivalents of the fatty acid. The esterified monolignol showed relevant long-term radical scavenging activity, comparable to other commercial, petroleum-based antioxidants. Different lignin fractions were also used as substrates for enzymatic esterification with different fatty acids, resulting in esterification degrees of 20-58% (of the total aliphatic OH), depending on the specific combination of fatty acid-lignin fractions.

14.
Water Sci Technol ; 63(10): 2457-61, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21977673

RESUMEN

Microbial fuel cells (MFCs) are novel bioelectrochemical devices for spontaneous conversion of biomass into electricity through the metabolic activity of the bacteria. Microbial production of electricity may become an important source of bioenergy in future because MFCs offer the possibility of extracting electric current from a wide range of soluble or dissolved complex organic wastes and renewable biomass. However, the materials used in these devices are still not economic and researchers use different materials as cathode and anode in MFCs. This results in variable performance which is difficult to compare. We tested several commercially available materials for their suitability as anode in an acetate fed MFC. Besides, a novel non-platinized activated carbon (AC) based, gas porous air cathode was also tested. Both the anode and cathode were tested in a half cell configuration. Carbon cloth, graphite cloth and dynamically stable anode (DSA) served as ideal anode material with carbon cloth and graphite mesh reaching the open circuit voltage (OCV) of acetate oxidation (-500 mV vs. Ag/AgCl). The effect of increasing concentration of acetate on anode OCV was also investigated and results showed that on increasing the acetate concentration from 10 mM to 40 mM has no adverse impact on the anodic activity towards electrochemical oxidation of acetate. The AC cathode showed stable current (-1.2 mA/cm2) over a period of 100 days.


Asunto(s)
Fuentes de Energía Bioeléctrica , Acetatos , Análisis de la Demanda Biológica de Oxígeno , Electrodos , Ensayo de Materiales
15.
J Agric Food Chem ; 69(44): 13217-13226, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34706532

RESUMEN

The enzymatic production of xylo-oligosaccharides (XOs) from destarched wheat bran with a GH11 xylanase was studied. Xylo-oligosaccharides (XOs) produced were separated into different fractions according to their degree of polymerization (DP) and the nature of their substituents: arabinoxylo-oligosaccharides (AXOs) with a DP from 2 to 3 and DP from 2 to 6 and feruloylated arabinoxylo-oligosaccharides (FAXOs) esterified by ferulic and p-coumaric acids with a DP from 3 to 6. Both AXOs (short and long DP) and FAXOs stimulated the growth of Bifidobacterium adolescentis, Faecalibacterium prausnitzii, and Prevotella copri similarly but not Lactobacillus rhamnosus. The utilization of AXOs and FAXOs as a carbon source resulted in the increase in turbidity, decrease in pH, and production of short-chain fatty acids (SCFAs) in the culture broth. The highest amount of SCFAs was produced by F. prausnitzii using FAXOs. Results suggest that FAXOs and AXOs have the potential to be considered as prebiotics.


Asunto(s)
Fibras de la Dieta , Probióticos , Bacterias/genética , Carbono , Oligosacáridos , Polimerizacion , Prebióticos , Prevotella , Xilanos
17.
Anaerobe ; 16(1): 12-8, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19427389

RESUMEN

Sulfidogenic communities in the production waters of onshore oil fields in north-eastern India were examined using a culturing approach. Production water samples were inoculated into medium selective for Sulfate reducing bacteria (SRB) and Thiosulfate Reducing Bacteria (TRB). The total number of viable sulfidogenic microorganisms in the samples obtained from the two production water tanks was approximately 10(5) MPN ml(-1) (most probable number per ml). Most of the isolates were thermo-tolerant and could be grown between 40 and 45 degrees C. Hydrogen sulfide production by TRB was significantly higher than by SRB. Based on 16S rRNA gene sequencing, the isolates were grouped in nine different phylotypes. Phylogenetic analysis indicated that most of the SRB were affiliated with the phylum Proteobacteria, encompassing Gram-negative bacteria, belonging to the genera Desulfovibrio, Desulfomicrobium, and Desulfobulbus. However, five isolates grouped with the genus Desulfotomaculum were found to be gram-positive SRB. Most of the thiosulfate reducing isolates was affiliated with the phylum Firmicutes, including Clostridium and Fusibacter and also with the phylum Proteobacteria, including the genera Enterobacter and Citrobacter. Phylotypes related to Clostridium (69%) and Desulfovibrio (53%) dominated the community in the production water samples. This study demonstrates the diversity of the TRB and SRB that play a critical role in the souring mediated corrosion of the oil-water separation tanks in the north-eastern India oil fields.


Asunto(s)
Bacterias Anaerobias/clasificación , Bacterias Anaerobias/aislamiento & purificación , Biodiversidad , Petróleo/microbiología , Sulfuros/metabolismo , Microbiología del Agua , Bacterias Anaerobias/metabolismo , Análisis por Conglomerados , Recuento de Colonia Microbiana , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Calor , India , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
18.
Sci Total Environ ; 715: 137003, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32023516

RESUMEN

An enrichment methodology was developed for a homoacetogenic biocathode that is able to function at high concentrations of bicarbonates for the microbial electrosynthesis (MES) of acetate from carbon dioxide. The study was performed in two stages; enrichment of consortia in serum bottles and the development of a biocathode in MES. A homoacetogenic consortium was sequentially grown under increasing concentrations of bicarbonate, in serum bottles, at room temperature. The acetate production rate was found to increase with the increase in the bicarbonate concentration and evidenced a maximum production rate of 260 mg/L d-1 (15 g HCO3-/L). On the contrary, carbon conversion efficiency decreased with the increase in the bicarbonate concentration, which evidenced a maximum at 2.5 g HCO3-/L (90.16%). Following a further increase in the bicarbonate concentration up to 20 g HCO3-/L, a visible inhibition was registered with respect to the acetate production rate and the carbon conversion efficiency. Well adapted biomass from 15 g HCO3-/L was used to develop biocathodic catalyst for MES. An effective biocathode was developed after 4 cycles of operation, during which acetate production was improved gradually, evidencing a maximum production rate of 24.53 mg acetate L-1 d-1 (carbon conversion efficiency, 47.72%). Compared to the enrichment stage, the carbon conversion efficiency and the rate of acetate production in MES were found to be low. The production of acetate induced a change in the catholyte pH, from neutral conditions towards acidic conditions.


Asunto(s)
Bicarbonatos/química , Acetatos , Dióxido de Carbono , Electrodos , Estudios de Factibilidad
19.
Top Curr Chem (Cham) ; 376(4): 32, 2018 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-29992468

RESUMEN

Lignin is the most abundant source of renewable ready-made aromatic chemicals for making sustainable polymers. However, the structural heterogeneity, high polydispersity, limited chemical functionality and solubility of most technical lignins makes them challenging to use in developing new bio-based polymers. Recently, greater focus has been given to developing polymers from low molecular weight lignin-based building blocks such as lignin monomers or lignin-derived bio-oils that can be obtained by chemical depolymerization of lignins. Lignin monomers or bio-oils have additional hydroxyl functionality, are more homogeneous and can lead to higher levels of lignin substitution for non-renewables in polymer formulations. These potential polymer feed stocks, however, present their own challenges in terms of production (i.e., yields and separation), pre-polymerization reactions and processability. This review provides an overview of recent developments on polymeric materials produced from lignin-based model compounds and depolymerized lignin bio-oils with a focus on thermosetting materials. Particular emphasis is given to epoxy resins, polyurethanes and phenol-formaldehyde resins as this is where the research shows the greatest overlap between the model compounds and bio-oils. The common goal of the research is the development of new economically viable strategies for using lignin as a replacement for petroleum-derived chemicals in aromatic-based polymers.


Asunto(s)
Lignina/química , Temperatura , Resinas Epoxi/química , Formaldehído/química , Lignina/síntesis química , Modelos Moleculares , Fenol/química , Polimerizacion
20.
Bioelectrochemistry ; 113: 26-34, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27631151

RESUMEN

In microbial electrosynthesis (MES), CO2 can be reduced preferably to multi-carbon chemicals by a biocathode-based process which uses electrochemically active bacteria as catalysts. A mixed anaerobic consortium from biological origin typically produces methane from CO2 reduction which circumvents production of multi-carbon compounds. This study aimed to develop a stable and robust CO2 reducing biocathode from a mixed culture inoculum avoiding the methane generation. An effective approach was demonstrated based on (i) an enrichment procedure involving inoculum pre-treatment and several culture transfers in H2:CO2 media, (ii) a transfer from heterotrophic to autotrophic growth and (iii) a sequential batch operation. Biomass growth and gradual acclimation to CO2 electro-reduction accomplished a maximum acetate production rate of 400mgLcatholyte-1d-1 at -1V (vs. Ag/AgCl). Methane was never detected in more than 300days of operation. Accumulation of acetate up to 7-10gL-1 was repeatedly attained by supplying (80:20) CO2:N2 mixture at -0.9 to -1V (vs. Ag/AgCl). In addition, ethanol and butyrate were also produced from CO2 reduction. Thus, a robust CO2 reducing biocathode can be developed from a mixed culture avoiding methane generation by adopting the specific culture enrichment and operation procedures without the direct addition of chemical inhibitor.


Asunto(s)
Reactores Biológicos/microbiología , Dióxido de Carbono/metabolismo , Acetatos/metabolismo , Procesos Autotróficos , Dióxido de Carbono/química , Catálisis , Clostridium/crecimiento & desarrollo , Clostridium/metabolismo , Electroquímica , Electrodos , Metano/biosíntesis , Oxidación-Reducción , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA