Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Exp Med ; 221(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39150482

RESUMEN

Coordination of cellular metabolism is essential for optimal T cell responses. Here, we identify cytosolic acetyl-CoA production as an essential metabolic node for CD8 T cell function in vivo. We show that CD8 T cell responses to infection depend on acetyl-CoA derived from citrate via the enzyme ATP citrate lyase (ACLY). However, ablation of ACLY triggers an alternative, acetate-dependent pathway for acetyl-CoA production mediated by acyl-CoA synthetase short-chain family member 2 (ACSS2). Mechanistically, acetate fuels both the TCA cycle and cytosolic acetyl-CoA production, impacting T cell effector responses, acetate-dependent histone acetylation, and chromatin accessibility at effector gene loci. When ACLY is functional, ACSS2 is not required, suggesting acetate is not an obligate metabolic substrate for CD8 T cell function. However, loss of ACLY renders CD8 T cells dependent on acetate (via ACSS2) to maintain acetyl-CoA production and effector function. Together, ACLY and ACSS2 coordinate cytosolic acetyl-CoA production in CD8 T cells to maintain chromatin accessibility and T cell effector function.


Asunto(s)
ATP Citrato (pro-S)-Liasa , Acetatos , Acetilcoenzima A , Linfocitos T CD8-positivos , Cromatina , Ratones Endogámicos C57BL , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Animales , Cromatina/metabolismo , Acetilcoenzima A/metabolismo , ATP Citrato (pro-S)-Liasa/metabolismo , ATP Citrato (pro-S)-Liasa/genética , Ratones , Acetatos/metabolismo , Acetato CoA Ligasa/metabolismo , Acetato CoA Ligasa/genética , Acetilación , Ratones Noqueados , Citosol/metabolismo , Histonas/metabolismo
2.
Sci Adv ; 9(14): eadg0731, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37018401

RESUMEN

Women experience osteoporosis at higher rates than men. Aside from hormones, the mechanisms driving sex-dependent bone mass regulation are not well understood. Here, we demonstrate that the X-linked H3K4me2/3 demethylase KDM5C regulates sex-specific bone mass. Loss of KDM5C in hematopoietic stem cells or bone marrow monocytes increases bone mass in female but not male mice. Mechanistically, loss of KDM5C impairs the bioenergetic metabolism, resulting in impaired osteoclastogenesis. Treatment with the KDM5 inhibitor reduces osteoclastogenesis and energy metabolism of both female mice and human monocytes. Our report details a sex-dependent mechanism for bone homeostasis, connecting epigenetic regulation to osteoclast metabolism and positions KDM5C as a potential target for future treatment of osteoporosis in women.


Asunto(s)
Osteoclastos , Osteoporosis , Animales , Femenino , Humanos , Masculino , Ratones , Metabolismo Energético , Epigénesis Genética , Histona Demetilasas/metabolismo , Osteoclastos/metabolismo
3.
Sci Rep ; 12(1): 16028, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163487

RESUMEN

Metabolic programming of the innate immune cells known as dendritic cells (DCs) changes in response to different stimuli, influencing their function. While the mechanisms behind increased glycolytic metabolism in response to inflammatory stimuli are well-studied, less is known about the programming of mitochondrial metabolism in DCs. We used lipopolysaccharide (LPS) and interferon-ß (IFN-ß), which differentially stimulate the use of glycolysis and oxidative phosphorylation (OXPHOS), respectively, to identify factors important for mitochondrial metabolism. We found that the expression of peroxisome proliferator-activated receptor gamma co-activator 1ß (PGC-1ß), a transcriptional co-activator and known regulator of mitochondrial metabolism, decreases when DCs are activated with LPS, when OXPHOS is diminished, but not with IFN-ß, when OXPHOS is maintained. We examined the role of PGC-1ß in bioenergetic metabolism of DCs and found that PGC-1ß deficiency indeed impairs their mitochondrial respiration. PGC-1ß-deficient DCs are more glycolytic compared to controls, likely to compensate for reduced OXPHOS. PGC-1ß deficiency also causes decreased capacity for ATP production at steady state and in response to IFN-ß treatment. Loss of PGC-1ß in DCs leads to increased expression of genes in inflammatory pathways, and reduced expression of genes encoding proteins important for mitochondrial metabolism and function. Collectively, these results demonstrate that PGC-1ß is a key regulator of mitochondrial metabolism and negative regulator of inflammatory gene expression in DCs.


Asunto(s)
Lipopolisacáridos , PPAR gamma , Adenosina Trifosfato , Expresión Génica , Interferón beta/genética , Interferón beta/metabolismo , Lipopolisacáridos/farmacología , PPAR gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Cancer Lett ; 525: 170-178, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-34752846

RESUMEN

Enzalutamide resistance has been observed in approximately 50% of patients with prostate cancer (PCa) bone metastases. Therefore, there is an urgent need to investigate the mechanisms and develop strategies to overcome resistance. We observed enzalutamide resistance in bone lesion development induced by PCa cells in mouse models. We found that the bone microenvironment was indispensable for enzalutamide resistance because enzalutamide significantly inhibited the growth of subcutaneous C4-2B tumors and the proliferation of C4-2B cells isolated from the bone lesions, and the resistance was recapitulated only when C4-2B cells were co-cultured with osteoblasts. In revealing how osteoblasts contribute to enzalutamide resistance, we found that enzalutamide decreased TGFBR2 protein expression in osteoblasts, which was supported by clinical data. This decrease was possibly through PTH1R-mediated endocytosis. We showed that PTH1R blockade rescued enzalutamide-mediated decrease in TGFBR2 levels and enzalutamide responses in C4-2B cells that were co-cultured with osteoblasts. This is the first study to reveal the contribution of the bone microenvironment to enzalutamide resistance and identify PTH1R as a feasible target to overcome the resistance in PCa bone metastases.


Asunto(s)
Benzamidas/farmacología , Neoplasias Óseas/tratamiento farmacológico , Nitrilos/farmacología , Feniltiohidantoína/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Receptor de Hormona Paratiroídea Tipo 1/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/secundario , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Masculino , Ratones , Metástasis de la Neoplasia , Osteoblastos/efectos de los fármacos , Próstata/efectos de los fármacos , Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteolisis/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos
5.
Front Oncol ; 8: 180, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29911070

RESUMEN

Enzalutamide, a second-generation small-molecule inhibitor of the androgen receptor (AR), has been approved for patients who failed with androgen deprivation therapy and have developed castration-resistant prostate cancer. More than 80% of these patients develop bone metastases. The binding of enzalutamide to the AR prevents the nuclear translocation of the receptor, thus inactivating androgen signaling. However, prostate cancer cells eventually develop resistance to enzalutamide treatment. Studies have found resistance both in patients and in laboratory models. The mechanisms of and approaches to overcoming such resistance are significant issues that need to be addressed. In this review, we focus on the major mechanisms of acquired enzalutamide resistance, including genetic mutations and splice variants of the AR, signaling pathways that bypass androgen signaling, intratumoral androgen biosynthesis by prostate tumor cells, lineage plasticity, and contributions from the tumor microenvironment. Approaches for overcoming these mechanisms to enzalutamide resistance along with the associated problems and solutions are discussed. Emerging questions, concerns, and new opportunities in studying enzalutamide resistance will be addressed as well.

6.
Cell Signal ; 52: 112-120, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30184463

RESUMEN

Transforming growth factor ß (TGF-ß) plays an important role in normal development and homeostasis. Dysregulation of TGF-ß responsiveness and its downstream signaling pathways contribute to many diseases, including cancer initiation, progression, and metastasis. TGF-ß ligands bind to three isoforms of the TGF-ß receptor (TGFBR) with different affinities. TGFBR1 and 2 are both serine/threonine and tyrosine kinases, but TGFBR3 does not have any kinase activity. They are necessary for activating canonical or noncanonical signaling pathways, as well as for regulating the activation of other signaling pathways. Another prominent feature of TGF-ß signaling is its context-dependent effects, temporally and spatially. The diverse effects and context dependency are either achieved by fine-tuning the downstream components or by regulating the expressions and activities of the ligands or receptors. Focusing on the receptors in events in and beyond TGF-ß signaling, we review the membrane trafficking of TGFBRs, the kinase activity of TGFBR1 and 2, the direct interactions between TGFBR2 and other receptors, and the novel roles of TGFBR3.


Asunto(s)
Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Células Cultivadas , Humanos , Ratones , Modelos Animales , Transducción de Señal
7.
Cancer Lett ; 418: 109-118, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29337106

RESUMEN

TGF-ß plays a central role in prostate cancer (PCa) bone metastasis, and it is crucial to understand the bone cell-specific role of TGF-ß signaling in this process. Thus, we used knockout (KO) mouse models having deletion of the Tgfbr2 gene specifically in osteoblasts (Tgfbr2Col1CreERT KO) or in osteoclasts (Tgfbr2LysMCre KO). We found that PCa-induced bone lesion development was promoted in the Tgfbr2Col1CreERT KO mice, but was inhibited in the Tgfbr2LysMCre KO mice, relative to their respective control Tgfbr2FloxE2 littermates. Since metastatic PCa cells attach to osteoblasts when colonized in the bone microenvironment, we focused on the mechanistic studies using the Tgfbr2Col1CreERT KO mouse model. We found that bFGF was upregulated in osteoblasts from PC3-injected tibiae of Tgfbr2Col1CreERT KO mice and correlated with increased tumor cell proliferation, angiogenesis, amounts of cancer-associated fibroblasts and osteoclasts. In vitro studies showed that osteoblastogenesis was inhibited, osteoclastogenesis was stimulated, but PC3 viability was not affected, by bFGF treatments. Lastly, the increased PC3-induced bone lesions in Tgfbr2Col1CreERT KO mice were significantly attenuated by blocking bFGF using neutralizing antibody, suggesting bFGF is a promising target inhibiting bone metastasis.


Asunto(s)
Neoplasias Óseas/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Osteoblastos/metabolismo , Neoplasias de la Próstata/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/secundario , Línea Celular Tumoral , Humanos , Masculino , Ratones Noqueados , Osteoclastos/metabolismo , Células PC-3 , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Transducción de Señal , Trasplante Heterólogo
8.
Cancers (Basel) ; 10(12)2018 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-30469488

RESUMEN

The role of myeloid cell-specific TGF-ß signaling in non-small-cell lung cancer (NSCLC)-induced osteolytic bone lesion development is unknown. We used a genetically engineered mouse model, Tgfbr2LysMCre knockout (KO), which has a loss of TGF-ß signaling specifically in myeloid lineage cells, and we found that the area of H1993 cell-induced osteolytic bone lesions was decreased in Tgfbr2LysMCre KO mice, relative to the area in control littermates. The bone lesion areas were correlated with tumor cell proliferation, angiogenesis, and osteoclastogenesis in the microenvironment. The smaller bone lesion area was partially rescued by bFGF, which was expressed by osteoblasts. Interestingly, bFGF was able to rescue the osteoclastogenesis, but not the tumor cell proliferation or angiogenesis. We then focused on identifying osteoclast factors that regulate bFGF expression in osteoblasts. We found that the expression and secretion of CTHRC1 was downregulated in osteoclasts from Tgfbr2LysMCre KO mice; CTHRC1 was able to promote bFGF expression in osteoblasts, possibly through the Wnt/ß-catenin pathway. Functionally, bFGF stimulated osteoclastogenesis and inhibited osteoblastogenesis, but had no effect on H1993 cell proliferation. On the other hand, CTHRC1 promoted osteoblastogenesis and H1993 cell proliferation. Together, our data show that myeloid-specific TGF-ß signaling promoted osteolytic bone lesion development and bFGF expression in osteoblasts; that osteoclast-secreted CTHRC1 stimulated bFGF expression in osteoblasts in a paracrine manner; and that CTHRC1 and bFGF had different cell-specific functions that contributed to bone lesion development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA