Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Immunity ; 44(4): 847-59, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27037189

RESUMEN

Although antigen recognition mediated by the T cell receptor (TCR) influences many facets of Foxp3(+) regulatory T (Treg) cell biology, including development and function, the cell types that present antigen to Treg cells in vivo remain largely undefined. By tracking a clonal population of Aire-dependent, prostate-specific Treg cells in mice, we demonstrated an essential role for dendritic cells (DCs) in regulating organ-specific Treg cell biology. We have shown that the thymic development of prostate-specific Treg cells required antigen presentation by DCs. Moreover, Batf3-dependent CD8α(+) DCs were dispensable for the development of this clonotype and had negligible impact on the polyclonal Treg cell repertoire. In the periphery, CCR7-dependent migratory DCs coordinated the activation of organ-specific Treg cells in the prostate-draining lymph nodes. Our results demonstrate that the development and peripheral regulation of organ-specific Treg cells are dependent on antigen presentation by DCs, implicating DCs as key mediators of organ-specific immune tolerance.


Asunto(s)
Presentación de Antígeno/inmunología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Células Dendríticas/inmunología , Próstata/inmunología , Proteínas Represoras/genética , Autotolerancia/inmunología , Linfocitos T Reguladores/inmunología , Animales , Antígeno B7-1/biosíntesis , Antígeno B7-1/genética , Antígeno B7-2/biosíntesis , Antígeno B7-2/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/inmunología , Antígenos CD8/metabolismo , Diferenciación Celular/inmunología , Movimiento Celular/inmunología , Activación de Linfocitos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Próstata/citología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores CCR7/metabolismo , Proteínas Represoras/inmunología , Linfocitos T Reguladores/citología , Factores de Transcripción/metabolismo , Proteína AIRE
2.
J Pathol ; 262(2): 212-225, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37984408

RESUMEN

Despite evidence of genetic signatures in normal tissue correlating with disease risk, prospectively identifying genetic drivers and cell types that underlie subsequent pathologies has historically been challenging. The human prostate is an ideal model to investigate this phenomenon because it is anatomically segregated into three glandular zones (central, peripheral, and transition) that develop differential pathologies: prostate cancer in the peripheral zone (PZ) and benign prostatic hyperplasia (BPH) in the transition zone (TZ), with the central zone (CZ) rarely developing disease. More specifically, prostatic basal cells have been implicated in differentiation and proliferation during prostate development and regeneration; however, the contribution of zonal variation and the critical role of basal cells in prostatic disease etiology are not well understood. Using single-cell RNA sequencing of primary prostate epithelial cultures, we elucidated organ-specific, zone-specific, and cluster-specific gene expression differences in basal cells isolated from human prostate and seminal vesicle (SV). Aggregated analysis identified ten distinct basal clusters by Uniform Manifold Approximation and Projection. Organ specificity compared gene expression in SV with the prostate. As expected, SV cells were distinct from prostate cells by clustering, gene expression, and pathway analysis. For prostate zone specificity, we identified two CZ-specific clusters, while the TZ and PZ populations clustered together. Despite these similarities, differential gene expression was identified between PZ and TZ samples that correlated with gene expression profiles in prostate cancer and BPH, respectively. Zone-specific profiles and cell type-specific markers were validated using immunostaining and bioinformatic analyses of publicly available RNA-seq datasets. Understanding the baseline differences at the organ, zonal, and cellular level provides important insight into the potential drivers of prostatic disease and guides the investigation of novel preventive or curative treatments. Importantly, this study identifies multiple prostate basal cell populations and cell type-specific gene signatures within prostate basal epithelial cells that have potential critical roles in driving prostatic diseases. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Hiperplasia Prostática , Neoplasias de la Próstata , Masculino , Humanos , Próstata/patología , Transcriptoma , Hiperplasia Prostática/patología , Neoplasias de la Próstata/patología , Células Epiteliales/patología , Análisis de Secuencia de ARN
3.
Mol Carcinog ; 59(1): 62-72, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31674708

RESUMEN

Prostate cancer (PCa) deaths are typically the result of metastatic castration-resistant PCa (mCRPC). Recently, enzalutamide (Enz), an oral androgen receptor inhibitor, was approved for treating patients with mCRPC. Invariably, all PCa patients eventually develop resistance against Enz. Therefore, novel strategies aimed at overcoming Enz resistance are needed to improve the survival of PCa patients. The role of exosomes in drug resistance has not been fully elucidated in PCa. Therefore, we set out to better understand the exosome's role in the mechanism underlying Enz-resistant PCa. Results showed that Enz-resistant PCa cells (C4-2B, CWR-R1, and LNCaP) secreted significantly higher amounts of exosomes (2-4 folds) compared to Enz-sensitive counterparts. Inhibition of exosome biogenesis in resistant cells by GW4869 and dimethyl amiloride strongly decreased their cell viability. Mechanistic studies revealed upregulation of syntaxin 6 as well as its increased colocalization with CD63 in Enz-resistant PCa cells compared to Enz-sensitive cells. Syntaxin 6 knockdown by specific small interfering RNAs in Enz-resistant PCa cells (C4-2B and CWR-R1) resulted in reduced cell number and increased cell death in the presence of Enz. Furthermore, syntaxin 6 knockdown significantly reduced the exosome secretion in both Enz-resistant C4-2B and CWR-R1 cells. The Cancer Genome Atlas analysis showed increased syntaxin 6 expressions associated with higher Gleason score and decreased progression-free survival in PCa patients. Importantly, IHC analysis showed higher syntaxin 6 expression in cancer tissues from Enz-treated patients compared to Enz naïve patients. Overall, syntaxin 6 plays an important role in the secretion of exosomes and increased survival of Enz-resistant PCa cells.


Asunto(s)
Antineoplásicos/farmacología , Exosomas/metabolismo , Feniltiohidantoína/análogos & derivados , Neoplasias de la Próstata/tratamiento farmacológico , Proteínas Qa-SNARE/metabolismo , Benzamidas , Línea Celular Tumoral , Resistencia a Antineoplásicos , Exosomas/efectos de los fármacos , Humanos , Masculino , Nitrilos , Feniltiohidantoína/farmacología , Neoplasias de la Próstata/metabolismo
4.
Stem Cells ; 37(5): 690-700, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30720908

RESUMEN

Identification of defined epithelial cell populations with progenitor properties is critical for understanding prostatic development and disease. Here, we demonstrate that Sox2 expression is enriched in the epithelial cells of the proximal prostate adjacent to the urethra. We use lineage tracing of Sox2-positive cells during prostatic development, homeostasis, and regeneration to show that the Sox2 lineage is capable of self-renewal and contributes to prostatic regeneration. Persisting luminal cells express Sox2 after castration, highlighting a potential role for Sox2 in cell survival and castration-resistance. In addition to revealing a novel progenitor population in the prostate, these data implicate Sox2 as a regulatory factor of adult prostate epithelial stem cells. Stem Cells 2019;37:690-700.


Asunto(s)
Próstata/crecimiento & desarrollo , Neoplasias de la Próstata Resistentes a la Castración/genética , Factores de Transcripción SOXB1/genética , Células Madre , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Animales , Linaje de la Célula/genética , Proliferación Celular/genética , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Humanos , Masculino , Ratones , Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/terapia , Regeneración/genética
5.
Prostate ; 79(14): 1692-1704, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31433503

RESUMEN

BACKGROUND: WNT signaling is implicated in embryonic development, and in adult tissue homeostasis, while its deregulation is evident in disease. This study investigates the unique roles of canonical WNT10B in both normal prostate development and prostate cancer (PCa) progression. METHODS: Organ culture and rat ventral prostates (VPs) were used to study Wnt10b ontogeny and growth effect of WNT10B protein. PB-SV40 LTag rat VPs were utilized for Wnt expression polymerase chain reaction (PCR) array and immunohistochemistry. Human localized PCa tissue microarrays (TMAs) were investigated for differential WNT10B expression. Human RNA-seq data sets were queried for differential expression of WNT10B in metastatic and localized PCa. Knockdown of WNT10B in PC3 cells was utilized to study its effects on proliferation, stemness, epithelial to mesenchymal transition (EMT), and xenograft propagation. RESULTS: Wnt10b expression was highest at birth and rapidly declined in the postnatal rat VP. Exogenous WNT10B addition to culture developing VPs decreased growth suggesting an antiproliferative role. VPs from PB-SV40 LTag rats with localized PCa showed a 25-fold reduction in Wnt10b messenger RNA (mRNA) expession, confirmed at the protein level. Human PCa TMAs revealed elevated WNT10B protein in prostate intraepithelial neoplasia compared with normal prostates but reduced levels in localized PCa specimens. In contrast, RNA-seq data set of annotated human PCa metastasis found a significant increase in WNT10B mRNA expression compared with localized tumors suggesting stage-specific functions of WNT10B. Similarly, WNT10B mRNA levels were increased in metastatic cell lines PC3, PC3M, as well as in HuSLC, a PCa stem-like cell line, as compared with disease-free primary prostate epithelial cells. WNT10B knockdown in PC3 cells reduced expression of EMT genes, MMP9 and stemness genes NANOG and SOX2 and markedly reduced the stem cell-like side population. Furthermore, loss of WNT10B abrogated the ability of PC3 cells to propagate tumors via serial transplantation. CONCLUSIONS: Taken together, these results suggest a dual role for WNT10B in normal development and in PCa progression with opposing functions depending on disease stage. We propose that decreased WNT10B levels in localized cancer allow for a hyperproliferative state, whereas increased levels in advanced disease confer a stemness and malignant propensity which is mitigated by knocking down WNT10B levels. This raises the potential for WNT10B as a novel target for therapeutic intervention in metastatic PCa.


Asunto(s)
Próstata/crecimiento & desarrollo , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas/fisiología , Proteínas Wnt/fisiología , Animales , Línea Celular Tumoral , Proliferación Celular , Regulación hacia Abajo , Transición Epitelial-Mesenquimal , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Ratones Desnudos , Metástasis de la Neoplasia/patología , Trasplante de Neoplasias , Técnicas de Cultivo de Órganos , Células PC-3 , Neoplasia Intraepitelial Prostática/patología , Proteínas Proto-Oncogénicas/análisis , Proteínas Proto-Oncogénicas/genética , ARN Mensajero/análisis , Ratas , Ratas Sprague-Dawley , Proteínas Wnt/análisis , Proteínas Wnt/genética
6.
Prostate ; 79(10): 1166-1179, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31135075

RESUMEN

BACKGROUND: The progression of castration-resistant prostate cancer (CRPC) still relies on the function of androgen receptor (AR), achieved by evolving mechanisms to reactivate AR signaling under hormonal therapy. Histone deacetylase inhibitors (HDACis) disrupt cytoplasmic AR chaperone heat shock protein 90 (Hsp90) via HDAC6 inhibition, leading to AR degradation and growth suppression of prostate cancer (PCa) cells. However, current HDACis are not effective in clinical trials treating CRPC. METHODS: We designed hybrid molecules containing partial chemical scaffolds of AR antagonist enzalutamide (Enz) and HDACi suberoylanilide hydroxamic acid (SAHA) as new anti-PCa agents. We previously demonstrated that Enz-HDACi hybrid drug 2-75 targets both AR and Hsp90, which inhibits the growth of Enz-resistant C4-2 cells. In the current study, we further investigate the molecular and cellular actions of 2-75 and test its anti-PCa effects in vivo. RESULTS: Compared with Enz, 2-75 had greater AR antagonistic effects by decreasing the stability, transcriptional activity, and nuclear translocation of intracellular AR. In addition to inhibition of full-length AR (FL AR), 2-75 downregulated the AR-V7 variant in multiple PCa cell lines. Mechanistic studies indicated that the AR affinity of 2-75 retains the drug in the cytoplasm of AR + PCa cells and further directs 2-75 to the AR-associated protein complex, which permits localized effects on AR-associated Hsp90. Further, unlike pan-HDACi SAHA, the cytoplasm-retaining property allows 2-75 to significantly inhibit cytoplasmic HDAC6 with limited impact on nuclear HDACs. These selective cytoplasmic actions of 2-75 overcome the unfavorable resistance and toxicity properties associated with classical AR antagonists, HDACis, and Hsp90 inhibitors. Finally, 2-75 showed greater antitumor activities than Enz in vivo on SQ xenografts derived from LNCaP cells. CONCLUSIONS: Novel therapeutic strategy using newly designed 2-75 and related AR antagonist-HDACi hybrid drugs has great potential for effective treatment of CRPC.


Asunto(s)
Antineoplásicos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Inhibidores de Histona Desacetilasas/uso terapéutico , Feniltiohidantoína/análogos & derivados , Próstata/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Antineoplásicos/farmacología , Benzamidas , Línea Celular Tumoral , Regulación hacia Abajo , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Nitrilos , Feniltiohidantoína/farmacología , Feniltiohidantoína/uso terapéutico , Próstata/patología , Neoplasias de la Próstata/patología
7.
Biochem Biophys Res Commun ; 499(4): 1004-1010, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29627574

RESUMEN

The current paradigm in the development of new cancer therapies is the ability to target tumor cells while avoiding harm to noncancerous cells. Furthermore, there is a need to develop novel therapeutic options against drug-resistant cancer cells. Herein, we characterized the placental-derived stem cell (PLSC) exosomes (PLSCExo) and evaluated their anti-cancer efficacy in prostate cancer (PCa) cell lines. Nanoparticle tracking analyses revealed the size distribution (average size 131.4 ±â€¯0.9 nm) and concentration of exosomes (5.23 × 1010±1.99 × 109 per ml) secreted by PLSC. PLSCExo treatment strongly inhibited the viability of enzalutamide-sensitive and -resistant PCa cell lines (C4-2B, CWR-R1, and LNCaP cells). Interestingly, PLSCExo treatment had no effect on the viability of a non-neoplastic human prostate cell line (PREC-1). Mass spectrometry (MS) analyses showed that PLSCExo are loaded with 241 proteins and mainly with saturated fatty acids. Further, Ingenuity Pathway Analysis analyses of proteins loaded in PLSCExo suggested the role of retinoic acid receptor/liver x receptor pathways in their biological effects. Together, these results suggest the novel selective anti-cancer effects of PLSCExo against aggressive PCa cells.


Asunto(s)
Exosomas/metabolismo , Placenta/citología , Neoplasias de la Próstata/patología , Células Madre/metabolismo , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Exosomas/ultraestructura , Femenino , Humanos , Lípidos/química , Masculino , Invasividad Neoplásica , Embarazo , Transducción de Señal
8.
Am J Pathol ; 187(11): 2378-2387, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28823870

RESUMEN

Urinary complications resulting from benign prostatic hyperplasia and bladder outlet obstruction continue to be a serious health problem. Novel animal model systems and imaging approaches are needed to understand the mechanisms of disease initiation, and to develop novel therapies for benign prostatic hyperplasia. Long-term administration of both estradiol and testosterone in mice can result in prostatic enlargement and recapitulate several clinical components of lower urinary tract symptoms. Herein, we use longitudinal magnetic resonance imaging and histological analyses to quantify changes in prostatic volume, urethral volume, and genitourinary vascularization over time in response to estradiol-induced prostatic enlargement. Our data demonstrate significant prostatic enlargement by 12 weeks after treatment, with no detectable immune infiltration by macrophages or T- or B-cell populations. Importantly, the percentage of cell death, as measured by terminal deoxynucleotidyl transferase dUTP nick-end labeling, was significantly decreased in the prostatic epithelium of treated animals as compared to controls. We found no significant change in prostate cell proliferation in treated mice when compared to controls. These studies highlight the utility of magnetic resonance imaging to quantify changes in prostatic and urethral volumes over time. In conjunction with histological analyses, this approach has the high potential to enable mechanistic studies of initiation and progression of clinically relevant lower urinary tract symptoms. In addition, this model is tractable for investigation and testing of therapeutic interventions to ameliorate or potentially reverse prostatic enlargement.


Asunto(s)
Próstata/patología , Hiperplasia Prostática/patología , Obstrucción del Cuello de la Vejiga Urinaria/patología , Animales , Modelos Animales de Enfermedad , Estradiol/toxicidad , Linfocitos/patología , Imagen por Resonancia Magnética/métodos , Masculino , Ratones Endogámicos C57BL , Próstata/efectos de los fármacos , Hiperplasia Prostática/inducido químicamente , Obstrucción del Cuello de la Vejiga Urinaria/inducido químicamente
9.
Xenobiotica ; 48(10): 973-983, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29050522

RESUMEN

1. There is limited knowledge regarding the metabolism of megestrol acetate (MA), as it was approved by FDA in 1971, prior to the availability of modern tools for identifying specific drug-metabolizing enzymes. We determined the cytochrome P450s (P450s) and UDP-glucuronosyltransferases (UGTs) that metabolize MA, identified oxidative metabolites and determined pharmacologic activity at the progesterone, androgen and glucocorticoid receptors (PR, AR and GR, respectively). 2. Oxidative metabolites were produced using human liver microsomes (HLMs), and isolated for mass spectral (MS) and nuclear magnetic resonance (NMR) analyses. We screened recombinant P450s using MA at 62 µM (HLM Km for metabolite 1; M1) and 28 µM (HLM Km for metabolite 2; M2). UGT isoforms were simultaneously incubated with UDPGA, nicotinamide adenine dinucleotide phosphate (NADPH), CYP3A4 and MA. Metabolites were evaluated for pharmacologic activity on the PR, AR and GR. CYP3A4 and CYP3A5 are responsible for oxidative metabolism of 62 µM MA. 3. At 28 µM substrate concentration, CYP3A4 was the only contributing enzyme. Mass spectral and NMR data suggest metabolism of MA to two alcohols. After oxidation, MA is converted into two secondary glucuronides by UGT2B17 among other UGTs. MA, M1 and M2 had significant pharmacologic activity on the PR while only MA showed activity on the AR and GR.


Asunto(s)
Acetato de Megestrol/metabolismo , Metaboloma , Línea Celular Tumoral , Citocromo P-450 CYP3A/metabolismo , Inhibidores del Citocromo P-450 CYP3A/farmacología , Glucurónidos/metabolismo , Humanos , Cetoconazol/farmacología , Cinética , Acetato de Megestrol/química , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Oxidación-Reducción , Antígeno Prostático Específico/metabolismo , Espectroscopía de Protones por Resonancia Magnética , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato/efectos de los fármacos , Troleandomicina/farmacología
10.
Prostate ; 74(15): 1530-43, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25175748

RESUMEN

BACKGROUND: The Androgen Receptor (AR) is a nuclear hormone receptor that functions as a critical oncogene in all stages of prostate cancer progression, including progression to castration-resistance following androgen-deprivation therapy. Thus, identifying and targeting critical AR-regulated genes is one potential method to block castration-resistant cancer proliferation. Of particular importance are transcription factors that regulate stem cell pluripotency; many of these genes are emerging as critical oncogenes in numerous tumor cell types. Of these, Nanog has been previously shown to increase the self-renewal and stem-like properties of prostate cancer cells. Thus, we hypothesized that Nanog is a candidate AR target gene that may impart castration-resistance. METHODS: We modulated AR signaling in LNCaP prostate cancer cells and assayed for Nanog expression. Direct AR binding to the NANOG promoter was tested using AR Chromatin Immunoprecipation (ChIP) and analyses of publically available AR ChIP-sequencing data-sets. Nanog over-expressing cells were analyzed for cell growth and cytotoxicity in response to the AR antagonist enzalutamide and the microtubule stabilizing agent docetaxel. RESULTS: AR signaling upregulates Nanog mRNA and protein. AR binds directly to the NANOG promoter, and was not identified within 75 kb of the NANOGP8 pseudogene, suggesting the NANOG gene locus was preferentially activated. Nanog overexpression in LNCaP cells increases overall growth, but does not increase resistance to enzalutamide or docetaxel. CONCLUSIONS: Nanog is a novel oncogenic AR target gene in prostate cancer cells, and stable expression of Nanog increases proliferation and growth of prostate cancer cells, but not resistance to enzalutamide or docetaxel.


Asunto(s)
Antineoplásicos/farmacología , Regulación de la Expresión Génica/fisiología , Proteínas de Homeodominio/genética , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata/genética , Receptores Androgénicos/fisiología , Benzamidas , Western Blotting , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Docetaxel , Humanos , Inmunoprecipitación , Masculino , Proteína Homeótica Nanog , Nitrilos , Feniltiohidantoína/análogos & derivados , Feniltiohidantoína/farmacología , Polimorfismo de Longitud del Fragmento de Restricción , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Taxoides/farmacología , Regulación hacia Arriba
11.
J Transl Med ; 12: 313, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25424879

RESUMEN

BACKGROUND: Many current therapies for metastatic castration-resistant prostate cancer (mCRPC) are aimed at AR signaling; however, resistance to these therapies is inevitable. To personalize CRPC therapy in an individual with clinical progression despite maximal AR signaling blockade, it is important to characterize the status of AR activity within their cancer. Biopsies of bone metastases are invasive and frequently fail to yield sufficient tissue for further study. Evaluation of circulating tumor cells (CTCs) offers an alternative, minimally invasive mechanism to characterize and study late-stage disease. The goal of this study was to evaluate the utility of CTC interrogation with respect to the AR as a potential novel therapeutic biomarker in patients with mCRPC. METHODS: Fifteen mL of whole blood was collected from patients with progressive, metastatic mCRPC, the mononuclear cell portion was isolated, and fluorescence-activated cell sorting (FACS) was used to isolate and evaluate CTCs. A novel protocol was optimized to use ImageStreamX to quantitatively analyze AR expression and subcellular localization within CTCs. Co-expression of AR and the proliferation marker Ki67 was also determined using ImageStreamX. RESULTS: We found inter-patient and intra-patient heterogeneity in expression and localization of AR. Increased AR expression and nuclear localization are associated with elevated co-expression of Ki-67, consistent with the continued role for AR in castration-resistant disease. Despite intra-patient heterogeneity, CTCs from patients with prior exposure to abiraterone had increased AR expression compared to CTCs from patients who were abiraterone-naïve. CONCLUSIONS: As our toolbox for targeting AR function expands, our ability to evaluate AR expression and function within tumor samples from patients with late-stage disease will likely be a critical component of the personalized management of advanced prostate cancer. AR expression and nuclear localization varies within patients and between patients; however it remains associated with markers of proliferation. This supports a molecularly diverse AR-centric pathobiology imparting castration-resistance.


Asunto(s)
Metástasis de la Neoplasia , Células Neoplásicas Circulantes , Orquiectomía , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Anciano , Anciano de 80 o más Años , Estudios de Factibilidad , Citometría de Flujo , Humanos , Masculino , Persona de Mediana Edad , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/patología
12.
Mol Cancer Ther ; 23(4): 552-563, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38030378

RESUMEN

In castration-resistant prostate cancer (CRPC), increased glucocorticoid receptor (GR) expression and ensuing transcriptional activity have been proposed as an oncogenic "bypass" mechanism in response to androgen receptor (AR) signaling inhibition (ARSi). Here, we report that GR transcriptional activity acquired following ARSi is associated with the upregulation of cyclic adenosine monophosphate (cAMP)-associated gene expression pathways in both model systems and metastatic prostate cancer patient samples. In the context of ARSi, the expression of GR-mediated genes encoding cAMP signaling pathway-associated proteins can be inhibited by treatment with selective GR modulators (SGRMs). For example, in the context of ARSi, we found that GR activation resulted in upregulation of protein kinase inhibitor beta (PKIB) mRNA and protein levels, leading to nuclear accumulation of the cAMP-dependent protein kinase A catalytic subunit (PKA-c). Increased PKA-c, in turn, is associated with increased cAMP response element-binding protein phosphorylation and activity. Furthermore, enzalutamide and SGRM combination therapy in mice bearing CRPC xenografts delayed CRPC progression compared with enzalutamide therapy alone, and reduced tumor PKIB mRNA expression. Supporting the clinical importance of GR/PKA signaling activation in CRPC, we found a significant enrichment of both cAMP pathway signaling-associated gene expression and high NR3C1 (GR) activity in patient-derived xenograft models and metastatic human CRPC samples. These findings suggest a novel mechanism linking CRPC-induced GR transcriptional activity with increased cAMP signaling in AR-antagonized CRPC. Furthermore, our findings suggest that GR-specific modulation in addition to AR antagonism may delay GR+ CRPC time to recurrence, at least in part, by inhibiting tumor cAMP/PKA pathways.


Asunto(s)
Benzamidas , Feniltiohidantoína , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Animales , Ratones , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores de Glucocorticoides/metabolismo , Glucocorticoides/uso terapéutico , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Línea Celular Tumoral , Nitrilos/uso terapéutico , Transducción de Señal , ARN Mensajero
13.
Cancer Epidemiol Biomarkers Prev ; 33(4): 557-566, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38294689

RESUMEN

BACKGROUND: American men of African ancestry (AA) have higher prostate cancer incidence and mortality rates compared with American men of European ancestry (EA). Differences in genetic susceptibility mechanisms may contribute to this disparity. METHODS: To gain insights into the regulatory mechanisms of prostate cancer susceptibility variants, we tested the association between SNPs and DNA methylation (DNAm) at nearby CpG sites across the genome in benign and cancer prostate tissue from 74 AA and 74 EA men. Genome-wide SNP data (from benign tissue) and DNAm were generated using Illumina arrays. RESULTS: Among AA men, we identified 6,298 and 2,641 cis-methylation QTLs (meQTL; FDR of 0.05) in benign and tumor tissue, respectively, with 6,960 and 1,700 detected in EA men. We leveraged genome-wide association study (GWAS) summary statistics to identify previously reported prostate cancer GWAS signals likely to share a common causal variant with a detected meQTL. We identified nine GWAS-meQTL pairs with strong evidence of colocalization (four in EA benign, three in EA tumor, two in AA benign, and three in AA tumor). Among these colocalized GWAS-meQTL pairs, we identified colocalizing expression quantitative trait loci (eQTL) impacting four eGenes with known roles in tumorigenesis. CONCLUSIONS: These findings highlight epigenetic regulatory mechanisms by which prostate cancer-risk SNPs can modify local DNAm and/or gene expression in prostate tissue. IMPACT: Overall, our findings showed general consistency in the meQTL landscape of AA and EA men, but meQTLs often differ by tissue type (normal vs. cancer). Ancestry-based linkage disequilibrium differences and lack of AA representation in GWAS decrease statistical power to detect colocalization for some regions.


Asunto(s)
Metilación de ADN , Neoplasias de la Próstata , Masculino , Humanos , Negro o Afroamericano/genética , Estudio de Asociación del Genoma Completo , Neoplasias de la Próstata/epidemiología , Variación Genética , Polimorfismo de Nucleótido Simple
14.
Mol Cancer Res ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38820127

RESUMEN

There is tremendous need for improved prostate cancer (PCa) models. The mouse prostate is anatomically and developmentally different from the human prostate and does not spontaneously form tumors. Genetically engineered mouse models lack the heterogeneity of human cancer and rarely establish metastatic growth. Human xenografts are an alternative but must rely on an immunocompromised host. Therefore, we generated PCa murine xenograft models with an intact human immune system (huNOG and huNOG-EXL mice) to test whether humanizing tumor-immune interactions would improve modeling of metastatic PCa and the impact of androgen receptor-targeted and immunotherapies. These mice maintain multiple human immune cell lineages, including functional human T-cells and myeloid cells. Implications: To our knowledge, results illustrate the first model of human PCa that has an intact human immune system, metastasizes to clinically relevant locations, responds appropriately to standard-of-care hormonal therapies, and can model both an immunosuppressive and checkpoint-inhibition responsive immune microenvironment.

15.
Clin Cancer Res ; 30(8): 1530-1543, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38306015

RESUMEN

PURPOSE: Despite successful clinical management of castration-sensitive prostate cancer (CSPC), the 5-year survival rate for men with castration-resistant prostate cancer is only 32%. Combination treatment strategies to prevent disease recurrence are increasing, albeit in biomarker-unselected patients. Identifying a biomarker in CSPC to stratify patients who will progress on standard-of-care therapy could guide therapeutic strategies. EXPERIMENTAL DESIGN: Targeted deep sequencing was performed for the University of Illinois (UI) cohort (n = 30), and immunostaining was performed on a patient tissue microarray (n = 149). Bioinformatic analyses identified pathways associated with biomarker overexpression (OE) in the UI cohort, consolidated RNA sequencing samples accessed from Database of Genotypes and Phenotypes (n = 664), and GSE209954 (n = 68). Neutralizing antibody patritumab and ectopic HER3 OE were utilized for functional mechanistic experiments. RESULTS: We identified ERBB3 OE in diverse patient populations with CSPC, where it was associated with advanced disease at diagnosis. Bioinformatic analyses showed a positive correlation between ERBB3 expression and the androgen response pathway despite low dihydrotestosterone and stable expression of androgen receptor (AR) transcript in Black/African American men. At the protein level, HER3 expression was negatively correlated with intraprostatic androgen in Black/African American men. Mechanistically, HER3 promoted enzalutamide resistance in prostate cancer cell line models and HER3-targeted therapy resensitized therapy-resistant prostate cancer cell lines to enzalutamide. CONCLUSIONS: In diverse patient populations with CSPC, ERBB3 OE was associated with high AR signaling despite low intraprostatic androgen. Mechanistic studies demonstrated a direct link between HER3 and enzalutamide resistance. ERBB3 OE as a biomarker could thus stratify patients for intensification of therapy in castration-sensitive disease, including targeting HER3 directly to improve sensitivity to AR-targeted therapies.


Asunto(s)
Benzamidas , Feniltiohidantoína , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Andrógenos/uso terapéutico , Recurrencia Local de Neoplasia , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Nitrilos/uso terapéutico , Biomarcadores , Castración , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Receptor ErbB-3/genética
16.
Prostate ; 73(7): 724-33, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23138940

RESUMEN

BACKGROUND: In the adult human prostate CD133 expression is thought to mark rare prostate epithelial stem cells and malignant tumor stem/initiating cells. Such putative stem cell populations are thought to proliferate slowly, but possess unlimited proliferative potential. Based on this, we hypothesized that CD133(pos) prostate cancer cells proliferate slower than CD133(neg) cells. METHODS: Human prostate cancer cell lines were analyzed for CD133 expression and DNA content using flow cytometry. Rates of cell division and DNA synthesis were determined using CFSE cell tracing and BrdU uptake, respectively. Changes in cell cycle distribution and the percentage of CD133(pos) cells were assayed under conditions of different cell density and AR-pathway modulation. Lastly, we over-expressed lentiviral CD133 to measure whether CD133 regulates the cell cycle. RESULTS: The cell cycle distribution differs between CD133(pos) and CD133(neg) cells in all three human prostate cancer cell lines studied. CD133(pos) cells have a greater proportion of cells in G2 and proliferate faster than CD133(neg) cells. High cell density increases the percentage of CD133(pos) cells without changing CD133(pos) cell cycle progression. Treatment with the AR agonist R1881, or the anti-androgen MDV3100, significantly changed the percentage and proliferation of CD133(pos) cells. Finally, ectopic over-expression of CD133 had no effect on cell cycle progression. CONCLUSIONS: Contrary to our hypothesis, we demonstrate that CD133(pos) cells proliferate faster than CD133(neg) cells. This association of CD133 expression with increased cell proliferation is not directly mediated by CD133, suggesting that surface CD133 is a downstream target gene of an undefined pathway controlling cell proliferation.


Asunto(s)
Antígenos CD/metabolismo , Glicoproteínas/metabolismo , Péptidos/metabolismo , Próstata/patología , Neoplasias de la Próstata/patología , Antígeno AC133 , Antagonistas de Andrógenos/farmacología , Ciclo Celular , Línea Celular Tumoral , Citometría de Flujo , Humanos , Cinética , Masculino , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
17.
Cancer Lett ; 565: 216209, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37169162

RESUMEN

The development of androgen receptor signaling inhibitor (ARSI) drug resistance in prostate cancer (PC) remains therapeutically challenging. Our group has described the role of sex determining region Y-box 2 (SOX2) overexpression in ARSI-resistant PC. Continuing this work, we report that NR3C1, the gene encoding glucocorticoid receptor (GR), is a novel SOX2 target in PC, positively regulating its expression. Similar to ARSI treatment, SOX2-positive PC cells are insensitive to GR signaling inhibition using a GR modulating therapy. To understand SOX2-mediated nuclear hormone receptor signaling inhibitor (NHRSI) insensitivity, we performed RNA-seq in SOX2-positive and -negative PC cells following NHRSI treatment. RNA-seq prioritized differentially regulated genes mediating the cell cycle, including G2 checkpoint WEE1 Kinase (WEE1) and cyclin-dependent kinase 1 (CDK1). Additionally, WEE1 and CDK1 were differentially expressed in PC patient tumors dichotomized by high vs low SOX2 gene expression. Importantly, pharmacological targeting of WEE1 (WEE1i) in combination with an ARSI or GR modulator re-sensitizes SOX2-positive PC cells to nuclear hormone receptor signaling inhibition in vitro, and WEE1i combined with ARSI significantly slowed tumor growth in vivo. Collectively, our data suggest SOX2 predicts NHRSI resistance, and simultaneously indicates the addition of WEE1i to improve therapeutic efficacy of NHRSIs in SOX2-positive PC.


Asunto(s)
Antineoplásicos , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Transducción de Señal , Antineoplásicos/farmacología , Proteínas de Ciclo Celular/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Antagonistas de Receptores Androgénicos/farmacología , Receptores Citoplasmáticos y Nucleares , Línea Celular Tumoral , Proteínas Tirosina Quinasas/metabolismo , Factores de Transcripción SOXB1/genética
18.
Cancers (Basel) ; 16(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38201438

RESUMEN

Recent studies have demonstrated the association of APP and Aß with cancer, suggesting that BACE1 may play an important role in carcinogenesis. In the present study, we assessed BACE1's usefulness as a therapeutic target in prostate cancer (PCa). BACE1 expression was observed in human PCa tissue samples, patient-derived xenografts (PDX), human PCa xenograft tissue in nude mice, and transgenic adenocarcinoma of the mouse prostate (TRAMP) tissues by immunohistochemistry (IHC) analysis. Additionally, the downstream product of BACE1 activity, i.e., Aß1-42 expression, was also observed in these PCa tissues by IHC as well as by PET imaging in TRAMP mice. Furthermore, BACE1 gene expression and activity was confirmed in several established PCa cell lines (LNCaP, C4-2B-enzalutamide sensitive [S], C4-2B-enzalutamide resistant [R], 22Rv1-S, 22Rv1-R, PC3, DU145, and TRAMP-C1) by real-time PCR and fluorometric assay, respectively. Treatment with a pharmacological inhibitor of BACE1 (MK-8931) strongly reduced the proliferation of PCa cells in in vitro and in vivo models, analyzed by multiple assays (MTT, clonogenic, and trypan blue exclusion assays and IHC). Cell cycle analyses revealed an increase in the sub-G1 population and a significant modulation in other cell cycle stages (G1/S/G2/M) following MK-8931 treatment. Most importantly, in vivo administration of MK-8931 intraperitoneal (30 mg/kg) strongly inhibited TRAMP-C1 allograft growth in immunocompetent C57BL/6 mice (approximately 81% decrease, p = 0.019). Furthermore, analysis of tumor tissue using the prostate cancer-specific pathway array revealed the alteration of several genes involved in PCa growth and progression including Forkhead O1 (FOXO1). All together, these findings suggest BACE1 as a novel therapeutic target in advanced PCa.

19.
Cancer Res Commun ; 3(3): 371-382, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36875158

RESUMEN

Vitamin D deficiency is associated with an increased risk of prostate cancer mortality and is hypothesized to contribute to prostate cancer aggressiveness and disparities in African American populations. The prostate epithelium was recently shown to express megalin, an endocytic receptor that internalizes circulating globulin-bound hormones, which suggests regulation of intracellular prostate hormone levels. This contrasts with passive diffusion of hormones that is posited by the free hormone hypothesis. Here, we demonstrate that megalin imports testosterone bound to sex hormone-binding globulin into prostate cells. Prostatic loss of Lrp2 (megalin) in a mouse model resulted in reduced prostate testosterone and dihydrotestosterone levels. Megalin expression was regulated and suppressed by 25-hydroxyvitamin D (25D) in cell lines, patient-derived prostate epithelial cells, and prostate tissue explants. In patients, the relationships between hormones support this regulatory mechanism, as prostatic DHT levels are higher in African American men and are inversely correlated with serum 25D status. Megalin levels are reduced in localized prostate cancer by Gleason grade. Our findings suggest that the free hormone hypothesis should be revisited for testosterone and highlight the impact of vitamin D deficiency on prostate androgen levels, which is a known driver of prostate cancer. Thus, we revealed a mechanistic link between vitamin D and prostate cancer disparities observed in African Americans. Significance: These findings link vitamin D deficiency and the megalin protein to increased levels of prostate androgens, which may underpin the disparity in lethal prostate cancer in African America men.


Asunto(s)
Andrógenos , Calcifediol , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad , Neoplasias de la Próstata , Deficiencia de Vitamina D , Animales , Humanos , Masculino , Ratones , Negro o Afroamericano , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Próstata/metabolismo , Testosterona , Vitamina D/metabolismo
20.
Am J Clin Exp Urol ; 10(6): 425-439, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36636696

RESUMEN

Benign prostate hyperplasia and prostate cancer are common diseases that involve the overgrowth of prostatic tissue. Although their pathologies and symptoms differ, both diseases show aberrant activation of prostate progenitor cell phenotypes in a tissue that should be relatively quiescent. This phenomenon prompts a need to better define the normal prostate progenitor cell phenotype and pursue the discovery of causal networks that could yield druggable targets to combat hyperplastic prostate diseases. We used single-cell (sc) RNA-Seq analysis to confirm the identity of a luminal progenitor cell population in both the hormonally intact and castrated mouse prostate. Using marker genes from our scRNA-Seq analysis, we identified factors necessary for the regeneration phenotype of prostate organoids derived from mice and humans in vitro. These data outline potential factors necessary for prostate regeneration and utilization of scRNA-Seq approaches for the identification of pharmacologic strategies targeting critical cell populations that drive prostate disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA