Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Plant Physiol ; 161(3): 1158-71, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23341362

RESUMEN

Introduction of microbial trehalose biosynthesis enzymes has been reported to enhance abiotic stress resistance in plants but also resulted in undesirable traits. Here, we present an approach for engineering drought stress tolerance by modifying the endogenous trehalase activity in Arabidopsis (Arabidopsis thaliana). AtTRE1 encodes the Arabidopsis trehalase, the only enzyme known in this species to specifically hydrolyze trehalose into glucose. AtTRE1-overexpressing and Attre1 mutant lines were constructed and tested for their performance in drought stress assays. AtTRE1-overexpressing plants had decreased trehalose levels and recovered better after drought stress, whereas Attre1 mutants had elevated trehalose contents and exhibited a drought-susceptible phenotype. Leaf detachment assays showed that Attre1 mutants lose water faster than wild-type plants, whereas AtTRE1-overexpressing plants have a better water-retaining capacity. In vitro studies revealed that abscisic acid-mediated closure of stomata is impaired in Attre1 lines, whereas the AtTRE1 overexpressors are more sensitive toward abscisic acid-dependent stomatal closure. This observation is further supported by the altered leaf temperatures seen in trehalase-modified plantlets during in vivo drought stress studies. Our results show that overexpression of plant trehalase improves drought stress tolerance in Arabidopsis and that trehalase plays a role in the regulation of stomatal closure in the plant drought stress response.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Sequías , Estomas de Plantas/fisiología , Estrés Fisiológico/efectos de los fármacos , Trehalasa/genética , Adaptación Fisiológica/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Deshidratación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucuronidasa/metabolismo , Movimiento/efectos de los fármacos , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/genética , Transpiración de Plantas/efectos de los fármacos , Transpiración de Plantas/genética , Plantas Modificadas Genéticamente , Plantones/efectos de los fármacos , Plantones/fisiología , Estrés Fisiológico/genética , Temperatura , Trehalasa/metabolismo
2.
Plant Physiol ; 160(2): 884-96, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22855938

RESUMEN

Trehalose is a nonreducing sugar used as a reserve carbohydrate and stress protectant in a variety of organisms. While higher plants typically do not accumulate high levels of trehalose, they encode large families of putative trehalose biosynthesis genes. Trehalose biosynthesis in plants involves a two-step reaction in which trehalose-6-phosphate (T6P) is synthesized from UDP-glucose and glucose-6-phosphate (catalyzed by T6P synthase [TPS]), and subsequently dephosphorylated to produce the disaccharide trehalose (catalyzed by T6P phosphatase [TPP]). In Arabidopsis (Arabidopsis thaliana), 11 genes encode proteins with both TPS- and TPP-like domains but only one of these (AtTPS1) appears to be an active (TPS) enzyme. In addition, plants contain a large family of smaller proteins with a conserved TPP domain. Here, we present an in-depth analysis of the 10 TPP genes and gene products in Arabidopsis (TPPA-TPPJ). Collinearity analysis revealed that all of these genes originate from whole-genome duplication events. Heterologous expression in yeast (Saccharomyces cerevisiae) showed that all encode active TPP enzymes with an essential role for some conserved residues in the catalytic domain. These results suggest that the TPP genes function in the regulation of T6P levels, with T6P emerging as a novel key regulator of growth and development in higher plants. Extensive gene expression analyses using a complete set of promoter-ß-glucuronidase/green fluorescent protein reporter lines further uncovered cell- and tissue-specific expression patterns, conferring spatiotemporal control of trehalose metabolism. Consistently, phenotypic characterization of knockdown and overexpression lines of a single TPP, AtTPPG, points to unique properties of individual TPPs in Arabidopsis, and underlines the intimate connection between trehalose metabolism and abscisic acid signaling.


Asunto(s)
Arabidopsis/genética , Evolución Molecular , Familia de Multigenes , Monoéster Fosfórico Hidrolasas/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metabolismo de los Hidratos de Carbono , Dominio Catalítico , Activación Enzimática , Duplicación de Gen , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genes Reporteros , Prueba de Complementación Genética , Germinación , Proteínas Fluorescentes Verdes/metabolismo , Mutación , Fenotipo , Monoéster Fosfórico Hidrolasas/genética , Filogenia , Polen/enzimología , Polen/genética , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Semillas/efectos de los fármacos , Semillas/enzimología , Fosfatos de Azúcar/metabolismo , Transcriptoma , Trehalosa/análogos & derivados , Trehalosa/metabolismo
3.
Planta ; 236(2): 355-69, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22367062

RESUMEN

During the last decade, there has been growing interest in the role of trehalose metabolism in tolerance to abiotic stress in higher plants, especially cold stress. So far, this metabolism has not yet been studied in Vitis vinifera L., despite the economic importance of this crop. The goal of this paper was to investigate the involvement of trehalose metabolism in the response of grapevine to chilling stress, and to compare the response in plants bacterised with Burkholderia phytofirmans strain PsJN, a plant growth-promoting rhizobacterium that confers grapevine chilling tolerance, with mock-inoculated plants. In silico analysis revealed that the V. vinifera L. genome contains genes encoding the enzymes responsible for trehalose synthesis and degradation. Transcript analysis showed that these genes were differentially expressed in various plant organs, and we also characterised their response to chilling. Both trehalose and trehalose 6-phosphate (T6P) were present in grapevine tissues and showed a distinct pattern of accumulation upon chilling. Our results suggest a role for T6P as the main active molecule in the metabolism upon chilling, with a possible link with sucrose metabolism. Furthermore, plants colonised by B. phytofirmans and cultivated at 26°C accumulated T6P and trehalose in stems and leaves at concentrations similar to non-bacterised plants exposed to chilling temperatures for 1 day. Overall, our data suggest that T6P and trehalose accumulate upon chilling stress in grapevine and might participate in the resistance to chilling stress conferred by B. phytofirmans.


Asunto(s)
Burkholderia/fisiología , Fosfatos de Azúcar/metabolismo , Trehalosa/análogos & derivados , Trehalosa/metabolismo , Vitis/microbiología , Vitis/fisiología , Aclimatación , Secuencia de Aminoácidos , Frío , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Prueba de Complementación Genética , Datos de Secuencia Molecular , Filogenia , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Tallos de la Planta/enzimología , Tallos de la Planta/genética , Tallos de la Planta/microbiología , Tallos de la Planta/fisiología , ARN Mensajero/genética , ARN de Planta/genética , Alineación de Secuencia , Fosfatos de Azúcar/análisis , Trehalasa/genética , Trehalosa/análisis , Trehalosa/genética , Vitis/enzimología , Vitis/genética
4.
Mol Biol Evol ; 27(2): 359-69, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19812028

RESUMEN

The most widely distributed pathway to synthesize trehalose in nature consists of two consecutive enzymatic reactions with a trehalose-6-P (T6P)-synthase (TPS) enzyme, producing the intermediate T6P, and a T6P-phosphatase (TPP) enzyme, which dephosphorylates T6P to produce trehalose and inorganic phosphate. In plants, these enzymes are called Class I and Class II proteins, respectively, with some Class I proteins being active enzymes. The Class II proteins possess both TPS and TPP consensus regions but appear to have lost enzymatic activity during evolution. Plants also contain an extra group of enzymes of small protein size, of which some members have been characterized as functional TPPs. These Class III proteins have less sequence similarity with the Class I and Class II proteins. Here, we characterize for the first time, by using biochemical analysis and yeast growth complementation assays, the existence of a natural TPS-TPP bifunctional enzyme found in the bacterial species Cytophaga hutchinsonii. Through phylogenetic analysis, we show that prokaryotic genes such as ChTPSP might be the ancestor of the eukaryotic trehalose biosynthesis genes. Second, we show that plants have recruited during evolution, possibly by horizontal transfer from bacteria such as Rhodoferax ferrireducens, a new type of small protein, encoding TPP activity, which have been named Class III proteins. RfTPP has very high TPP activity upon expression in yeast. Finally, we demonstrate that TPS gene duplication, the recruitment of the Class III enzymes, and recruitment of an N-terminal regulatory element, which regulates the Class I enzyme activity in higher plants, were initiated very early in eukaryan evolution as the three classes of trehalose biosynthesis genes are already present in the alga Ostreococcus tauri.


Asunto(s)
Proteínas Bacterianas/genética , Cytophaga/enzimología , Monoéster Fosfórico Hidrolasas/genética , Trehalosa/biosíntesis , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/clasificación , Cytophaga/genética , Transferencia de Gen Horizontal , Glucosiltransferasas/clasificación , Glucosiltransferasas/genética , Modelos Biológicos , Monoéster Fosfórico Hidrolasas/clasificación , Filogenia , Trehalosa/genética
5.
Plant Cell Environ ; 32(8): 1015-32, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19344332

RESUMEN

Trehalose metabolism has profound effects on plant growth and metabolism, but the mechanisms involved are unclear. In Arabidopsis, 21 putative trehalose biosynthesis genes are classified in three subfamilies based on their similarity with yeast TPS1 (encoding a trehalose-6-phosphate synthase, TPS) or TPS2 (encoding a trehalose-6-phosphate phosphatase, TPP). Although TPS1 (Class I) and TPPA and TPPB (Class III) proteins have established TPS and TPP activity, respectively, the function of the Class II proteins (AtTPS5-AtTPS11) remains elusive. A complete set of promoter-beta-glucurinidase/green fluorescent protein reporters demonstrates their remarkably differential tissue-specific expression and responsiveness to carbon availability and hormones. Heterologous expression in yeast furthermore suggests that none of the encoded enzymes displays significant TPS or TPP activity, consistent with a regulatory rather than metabolic function for this remarkable class of proteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Glucosiltransferasas/metabolismo , Trehalosa/biosíntesis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Glucosiltransferasas/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Regiones Promotoras Genéticas , ARN de Planta/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
6.
Plant Signal Behav ; 8(3): e23209, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23299328

RESUMEN

The Arabidopsis trehalose-6-phosphate phosphatase (TPP) gene family arose mainly from whole genome duplication events and consists of 10 genes (TPPA-J). All the members encode active TPP enzymes, possibly regulating the levels of trehalose-6-phosphate, an established signaling metabolite in plants. GUS activity studies revealed tissue-, cell- and stage-specific expression patterns for the different members of the TPP gene family. Here we list additional examples of the remarkable features of the TPP gene family. TPPA-J expression levels seem, in most of the cases, differently regulated in response to light, darkness and externally supplied sucrose. Disruption of the TPPB gene leads to Arabidopsis plants with larger leaves, which is the result of an increased cell number in the leaves. Arabidopsis TPPA and TPPG are preferentially expressed in atrichoblast cells. TPPA and TPPG might fulfill redundant roles during the differentiation process of root epidermal cells, since the tppa tppg double mutant displays a hairy root phenotype, while the respective single knockouts have a distribution of trichoblast and atrichoblast cells similar to the wild type. These new data portray redundant and non-redundant functions of the TPP proteins in regulatory pathways of Arabidopsis.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Monoéster Fosfórico Hidrolasas/genética , Hojas de la Planta/enzimología , Raíces de Plantas/enzimología , Fosfatos de Azúcar/metabolismo , Trehalosa/análogos & derivados , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Luz , Mutación , Monoéster Fosfórico Hidrolasas/metabolismo , Epidermis de la Planta/enzimología , Epidermis de la Planta/crecimiento & desarrollo , Epidermis de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Sacarosa , Trehalosa/metabolismo
7.
FEBS J ; 278(21): 3978-90, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21883929

RESUMEN

All life forms on earth require a continuous input and monitoring of carbon and energy supplies. The AMP-activated kinase (AMPK)/sucrose non-fermenting1 (SNF1)/Snf1-related kinase1 (SnRK1) protein kinases are evolutionarily conserved metabolic sensors found in all eukaryotic organisms from simple unicellular fungi (yeast SNF1) to animals (AMPK) and plants (SnRK1). Activated by starvation and energy-depleting stress conditions, they enable energy homeostasis and survival by up-regulating energy-conserving and energy-producing catabolic processes, and by limiting energy-consuming anabolic metabolism. In addition, they control normal growth and development as well as metabolic homeostasis at the organismal level. As such, the AMPK/SNF1/SnRK1 kinases act in concert with other central signaling components to control carbohydrate uptake and metabolism, fatty acid and lipid biosynthesis and the storage of carbon energy reserves. Moreover, they have a tremendous impact on developmental processes that are triggered by environmental changes such as nutrient depletion or stress. Although intensive research by many groups has partly unveiled the factors that regulate AMPK/SNF1/SnRK1 kinase activity as well as the pathways and substrates they control, several fundamental issues still await to be clarified. In this review, we will highlight these issues and focus on the structure, function and regulation of the AMPK/SNF1/SnRK1 kinases.


Asunto(s)
Metabolismo Energético , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Regulación Alostérica , Dominio Catalítico , Homeostasis , Fosforilación , Conformación Proteica , Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/química , Relación Estructura-Actividad
8.
Mol Plant ; 3(2): 406-19, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20100798

RESUMEN

Higher plants typically do not produce trehalose in large amounts, but their genome sequences reveal large families of putative trehalose metabolism enzymes. An important regulatory role in plant growth and development is also emerging for the metabolic intermediate trehalose-6-P (T6P). Here, we present an update on Arabidopsis trehalose metabolism and a resource for further detailed analyses. In addition, we provide evidence that Arabidopsis encodes a single trehalose-6-P synthase (TPS) next to a family of catalytically inactive TPS-like proteins that might fulfill specific regulatory functions in actively growing tissues.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/metabolismo , Glucosiltransferasas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Western Blotting , Glucosiltransferasas/química , Glucosiltransferasas/genética , Modelos Biológicos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Trehalosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA