Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37685975

RESUMEN

Reactive α-dicarbonyls (α-DCs), such as methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG), are potent precursors in the formation of advanced glycation end products (AGEs). In particular, MGO and MGO-derived AGEs are thought to be involved in the development of vascular complications in diabetes. Experimental studies showed that citrus and pomegranate polyphenols can scavenge α-DCs. Therefore, the aim of this study was to evaluate the effect of a citrus and pomegranate complex (CPC) on the α-DCs plasma levels in a double-blind, placebo-controlled cross-over trial, where thirty-six elderly subjects were enrolled. They received either 500 mg of Citrus sinensis peel extract and 200 mg of Punica granatum concentrate in CPC capsules or placebo capsules for 4 weeks, with a 4-week washout period in between. For the determination of α-DCs concentrations, liquid chromatography tandem mass spectrometry was used. Following four weeks of CPC supplementation, plasma levels of MGO decreased by 9.8% (-18.7 nmol/L; 95% CI: -36.7, -0.7 nmol/L; p = 0.042). Our findings suggest that CPC supplementation may represent a promising strategy for mitigating the conditions associated with MGO involvement. This study was registered on clinicaltrials.gov as NCT03781999.


Asunto(s)
Citrus , Granada (Fruta) , Anciano , Humanos , Cápsulas , Productos Finales de Glicación Avanzada , Óxido de Magnesio , Piruvaldehído
2.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38203356

RESUMEN

The comet assay-based in vitro DNA repair assay has become a common tool for quantifying base excision repair (BER) activity in human lymphocytes or cultured cells. Here, we optimized the protocol for studying BER in human placental tissue because the placenta is a non-invasive tissue for biomonitoring of early-life exposures, and it can be used to investigate molecular mechanisms associated with prenatal disorders. The optimal protein concentration of placental protein extracts for optimal damage recognition and incision was 2 mg protein/mL. The addition of aphidicolin did not lead to reduced non-specific incisions and was, therefore, not included in the optimized protocol. The interval between sample collection and analysis did not affect BER activity up to 70 min. Finally, this optimized protocol was tested on pre-eclamptic (PE) placental tissues (n = 11) and significantly lower BER activity in PE placentas compared to controls (n = 9) was observed. This was paralleled by a significant reduction in the expression of BER-related genes and increased DNA oxidation in PE placentas. Our study indicates that BER activity can be determined in placentas, and lower activity is present in PE compared with healthy. These findings should be followed up in prospective clinical investigations to examine BER's role in the advancement of PE.


Asunto(s)
Placenta , Preeclampsia , Embarazo , Humanos , Femenino , Proyectos Piloto , Ensayo Cometa , Estudios Prospectivos , Reparación del ADN , Preeclampsia/genética
3.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt A): 1177-1189, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28286015

RESUMEN

BACKGROUND: Rutin intake is associated with a reduced risk of cardiovascular disease (CVD). The exact mechanism by which rutin can protect against CVD development is still enigmatic. Since, rutin is a compound with a relatively short half-life, the direct antioxidant effect of rutin cannot explain the long-lasting effect on human health. We hypothesized that rutin next to its direct antioxidant effect that improves endothelial function, may also induce an adaptive response in endogenous antioxidant systems. METHODS AND RESULTS: In Human Umbilical Vein Endothelial Cells (HUVECs), the direct antioxidant effect was confirmed. During scavenging of Reactive Oxygen Species (ROS), rutin is oxidized into a quinone derivative. HUVECs pretreated with rutin quinone became better protected against a second challenge with oxidative stress 3h later. LC-MS/MS analysis indicated that rutin quinone targets cysteine 151 of Keap1. Moreover, we found that the quinone is an inhibitor of the selenoprotein thioredoxin reductase 1. These properties correlated with an activation of Nrf2 and upregulation of Glutamate Cysteine Ligase, the rate-limiting enzyme of glutathione synthesis, while NF-κB and HIF activation became blunted by rutin treatment. Furthermore, rutin was found to prevent hydrogen peroxide from impairing relaxation of human chorionic plate placental vessels, which may help to protect endothelial function. CONCLUSION AND SIGNIFICANCE: Rutin functions as an antioxidant and is oxidized into a quinone that upregulates the Nrf2-mediated endogenous antioxidant response. This mechanism suggests that rutin selectively exerts its protective effects in regions with increased oxidative stress, and explains how rutin reduces the risk of developing CVD. GENERAL SIGNIFICANCE: The newly found mechanism behind the long-term protection of rutin against cardiovascular disease, the selective upregulation of endogenous antioxidant systems, contributes to the further understanding why rutin can reduce the risk on developing cardiovascular disease.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Arteriolas/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Rutina/farmacología , Antioxidantes/farmacología , Arteriolas/metabolismo , Células Cultivadas , Femenino , Glutamato-Cisteína Ligasa/metabolismo , Células HEK293 , Semivida , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , FN-kappa B/metabolismo , Oxidación-Reducción/efectos de los fármacos , Placenta/efectos de los fármacos , Placenta/metabolismo , Embarazo , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba/efectos de los fármacos
4.
Hypertension ; 81(7): 1537-1549, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38752345

RESUMEN

BACKGROUND: Preeclampsia is a multifaceted syndrome that includes maternal vascular dysfunction. We hypothesize that increased placental glycolysis and hypoxia in preeclampsia lead to increased levels of methylglyoxal (MGO), consequently causing vascular dysfunction. METHODS: Plasma samples and placentas were collected from uncomplicated and preeclampsia pregnancies. Uncomplicated placentas and trophoblast cells (BeWo) were exposed to hypoxia. The reactive dicarbonyl MGO and advanced glycation end products (Nε-(carboxymethyl)lysine [CML], Nε-(carboxyethyl)lysine [CEL], and MGO-derived hydroimidazolone [MG-H]) were quantified using liquid chromatography-tandem mass spectrometry. The activity of GLO1 (glyoxalase-1), that is, the enzyme detoxifying MGO, was measured. The impact of MGO on vascular function was evaluated using wire/pressure myography. The therapeutic potential of the MGO-quencher quercetin and mitochondrial-specific antioxidant mitoquinone mesylate (MitoQ) was explored. RESULTS: MGO, CML, CEL, and MG-H2 levels were elevated in preeclampsia-placentas (+36%, +36%, +25%, and +22%, respectively). Reduced GLO1 activity was observed in preeclampsia-placentas (-12%) and hypoxia-exposed placentas (-16%). Hypoxia-induced MGO accumulation in placentas was mitigated by the MGO-quencher quercetin. Trophoblast cells were identified as the primary source of MGO. Reduced GLO1 activity was also observed in hypoxia-exposed BeWo cells (-26%). Maternal plasma concentrations of CML and the MGO-derived MG-H1 increased as early as 12 weeks of gestation (+16% and +17%, respectively). MGO impaired endothelial barrier function, an effect mitigated by MitoQ, and heightened vascular responsiveness to thromboxane A2. CONCLUSIONS: This study reveals the accumulation of placental MGO in preeclampsia and upon exposure to hypoxia, demonstrates how MGO can contribute to vascular impairment, and highlights plasma CML and MG-H1 levels as promising early biomarkers for preeclampsia.


Asunto(s)
Biomarcadores , Placenta , Preeclampsia , Piruvaldehído , Preeclampsia/metabolismo , Preeclampsia/fisiopatología , Preeclampsia/sangre , Humanos , Femenino , Piruvaldehído/metabolismo , Piruvaldehído/sangre , Embarazo , Placenta/metabolismo , Biomarcadores/metabolismo , Biomarcadores/sangre , Adulto , Productos Finales de Glicación Avanzada/metabolismo , Trofoblastos/metabolismo , Lactoilglutatión Liasa/metabolismo
5.
Reprod Sci ; 28(8): 2186-2199, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33523425

RESUMEN

Preeclampsia complicates 5-8% of all pregnancies worldwide, and although its pathophysiology remains obscure, placental oxidative stress and mitochondrial abnormalities are considered to play a key role. Mitochondrial abnormalities in preeclamptic placentae have been described, but the extent to which mitochondrial content and the molecular pathways controlling this (mitochondrial biogenesis and mitophagy) are affected in preeclamptic placentae is unknown. Therefore, in preeclamptic (n = 12) and control (n = 11) placentae, we comprehensively assessed multiple indices of placental antioxidant status, mitochondrial content, mitochondrial biogenesis, mitophagy, and mitochondrial fusion and fission. In addition, we also explored gene expression profiles related to inflammation and apoptosis. Preeclamptic placentae were characterized by higher levels of oxidized glutathione, a higher total antioxidant capacity, and higher mRNA levels of the mitochondrial-located antioxidant enzyme manganese-dependent superoxide dismutase 2 compared to controls. Furthermore, mitochondrial content was significantly lower in preeclamptic placentae, which was accompanied by an increased abundance of key constituents of glycolysis. Moreover, mRNA and protein levels of key molecules involved in the regulation of mitochondrial biogenesis were lower in preeclamptic placentae, while the abundance of constituents of the mitophagy, autophagy, and mitochondrial fission machinery was higher compared to controls. In addition, we found evidence for activation of apoptosis and inflammation in preeclamptic placentae. This study is the first to comprehensively demonstrate abnormalities at the level of the mitochondrion and the molecular pathways controlling mitochondrial content/function in preeclamptic placentae. These aberrations may well contribute to the pathophysiology of preeclampsia by upregulating placental inflammation, oxidative stress, and apoptosis. Graphical Abstract.


Asunto(s)
Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Placenta/metabolismo , Preeclampsia/metabolismo , Adulto , Antioxidantes/metabolismo , Apoptosis/fisiología , Femenino , Humanos , Inflamación/metabolismo , Embarazo , Superóxido Dismutasa/metabolismo , Trofoblastos/metabolismo
6.
PLoS One ; 16(1): e0245155, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33434211

RESUMEN

INTRODUCTION: Impaired utero-placental perfusion is a well-known feature of early preeclampsia and is associated with placental hypoxia and oxidative stress. Although aberrations at the level of the mitochondrion have been implicated in PE pathophysiology, whether or not hypoxia-induced mitochondrial abnormalities contribute to placental oxidative stress is unknown. METHODS: We explored whether abnormalities in mitochondrial metabolism contribute to hypoxia-induced placental oxidative stress by using both healthy term placentae as well as a trophoblast cell line (BeWo cells) exposed to hypoxia. Furthermore, we explored the therapeutic potential of the antioxidants MitoQ and quercetin in preventing hypoxia-induced placental oxidative stress. RESULTS: Both in placental explants as well as BeWo cells, hypoxia resulted in reductions in mitochondrial content, decreased abundance of key molecules involved in the electron transport chain and increased expression and activity of glycolytic enzymes. Furthermore, expression levels of key regulators of mitochondrial biogenesis were decreased while the abundance of constituents of the mitophagy, autophagy and mitochondrial fission machinery was increased in response to hypoxia. In addition, placental hypoxia was associated with increased oxidative stress, inflammation, and apoptosis. Moreover, experiments with MitoQ revealed that hypoxia-induced reactive oxygen species originated from the mitochondria in the trophoblasts. DISCUSSION: This study is the first to demonstrate that placental hypoxia is associated with mitochondrial-generated reactive oxygen species and significant alterations in the molecular pathways controlling mitochondrial content and function. Furthermore, our data indicate that targeting mitochondrial oxidative stress may have therapeutic benefit in the management of pathologies related to placental hypoxia.


Asunto(s)
Mitocondrias/metabolismo , Biogénesis de Organelos , Estrés Oxidativo , Preeclampsia/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Trofoblastos/metabolismo , Hipoxia de la Célula , Línea Celular , Femenino , Humanos , Mitocondrias/patología , Preeclampsia/patología , Embarazo , Trofoblastos/patología
7.
Hypertens Res ; 43(12): 1361-1374, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32733105

RESUMEN

Preeclampsia (PE) is a pregnancy-related disorder characterized by hypertension and proteinuria that affects 3-10% of all pregnancies. Although its pathophysiology remains obscure, placental hypoxia-induced oxidative stress and alterations in vascular function, morphology, and endothelial barrier integrity are considered to play a key role in the development of preeclampsia. In this study, placental villous explants of noncomplicated placentae and BeWo cells were subjected to hypoxia. The effect of placental hypoxic-conditioned medium (HCM) on intraluminal-induced contraction and endothelial barrier integrity in chorionic arteries was investigated using pressure myography. The impact of BeWo cell HCM on endothelial cell viability, reactive oxygen species formation and inflammation was also determined. Alterations in arterial morphology and contractile responsiveness to the thromboxane A2 analog (U46619) after exposure to placental HCM were examined immunohistochemically and by wire myography, respectively. Intraluminal administration of placental HCM induced vasoconstriction and increased the endothelial permeability for KCl, which was concentration-dependently prevented by quercetin. Placental and BeWo cell HCMs decreased endothelial cell viability, increased the production of reactive oxygen species and enhanced the secretion of IL-6 and IL-8. The cross-sectional area of the arterial media was increased upon exposure to placental HCM, which was associated with increased vascular proliferation and contractile responsiveness to U46619, and all of these effects were prevented by the antioxidants quercetin and RRR-α-tocopherol. This study is the first to comprehensively demonstrate the link between factors secreted by placental cells in response to hypoxia and vascular abnormalities and paves the way for new diagnostic approaches and therapies to better protect the maternal vasculature during and after a preeclampsia-complicated pregnancy.


Asunto(s)
Endotelio Vascular/fisiopatología , Hipoxia/fisiopatología , Placenta/fisiopatología , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico , Línea Celular , Medios de Cultivo Condicionados , Células Endoteliales/fisiología , Endotelio Vascular/metabolismo , Femenino , Humanos , Técnicas In Vitro , Permeabilidad , Placenta/irrigación sanguínea , Preeclampsia/etiología , Embarazo , Especies Reactivas de Oxígeno/metabolismo , Vasoconstricción
8.
Histol Histopathol ; 35(8): 849-862, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31985030

RESUMEN

Chorioamnionitis and preeclampsia account for the majority of preterm births worldwide. Thus far, adequate methods for early detection or prevention of these diseases are lacking. In preeclampsia, accelerated villous maturation is believed to compensate placental insufficiency. However, little is known about the effects of placental inflammation in chorioamnionitis on villous maturation. Therefore, we established a set of morphological parameters to evaluate histological villous maturity in pregnancies complicated by chorioamnionitis and preeclampsia. Preterm placentas complicated by chorioamnionitis or preeclampsia were compared to idiopathic preterm placentas and term controls. Histological villous maturation was analyzed by means of 17 histological markers. Fourteen of these markers provided information on absolute and relative numbers of the terminal villi (TV), the extent of their vascularization (using CD31-stained sections) and their exchange capacities. In addition, the numbers of syncytial bridges, syncytial apoptotic knots and shed syncytiotrophoblasts were counted. Accelerated villous maturation in preeclampsia was demonstrated by means of histological villous remodeling and confirmed by 11 relevant markers. Chorioamnionitis, however, only showed increased area of fetal capillaries. In preeclampsia, placentas may transition from growth to maturation earlier than placentas in normal pregnancies, whereas in chorioamnionitis placental changes are more acute and therefore less elaborated at a structural level. Regression analysis suggests the number of all villi and the number of terminal villi as a percentage of all villi as parameters to evaluate histological villous maturity in preeclamptic placentas and to assist diagnosis. However, we would recommend to analyze all 11 relevant parameters to judge placental maturity in detail.


Asunto(s)
Corioamnionitis/patología , Vellosidades Coriónicas/patología , Preeclampsia/patología , Adulto , Femenino , Humanos , Embarazo
9.
PLoS One ; 13(8): e0202648, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30142162

RESUMEN

INTRODUCTION: Preeclampsia is a major health problem in human pregnancy, severely complicating 5-8% of all pregnancies. The emerging molecular mechanism is that conditions like hypoxic stress trigger the release of placental messengers into the maternal circulation, which causes preeclampsia. Our objective was to develop an in vitro model, which can be used to further elucidate the molecular mechanisms of preeclampsia and which might be used to find a remedy. METHODS: Human non-complicated term placentas were collected. Placental explants were subjected to severe hypoxia and the conditioned media were added to chorionic arteries that were mounted into a myograph. Contractile responses of the conditioned media were determined, as well as effects on thromboxane-A2 (U46619) induced contractility. To identify the vasoactive compounds present in the conditioned media, specific receptor antagonists were evaluated. RESULTS: Factors released by placental explants generated under severe hypoxia induced an increased vasoconstriction and vascular contractility to thromboxane-A2. It was found that agonists for the angiotensin-I and endothelin-1 receptor released by placental tissue under severe hypoxia provoke vasoconstriction. The dietary antioxidant quercetin could partially prevent the acute and sustained vascular effects in a concentration-dependent manner. DISCUSSION: Both the acute vasoconstriction, as well as the increased contractility to U46619 are in line with the clinical vascular complications observed in preeclampsia. Data obtained with quercetin supports that our model opens avenues for e.g. nutritional interventions aimed at treating or preventing preeclampsia.


Asunto(s)
Constricción Patológica/genética , Placenta/metabolismo , Preeclampsia/genética , Vasoconstricción/genética , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/genética , Corion/irrigación sanguínea , Corion/metabolismo , Corion/patología , Constricción Patológica/fisiopatología , Medios de Cultivo Condicionados/farmacología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Femenino , Humanos , Hipoxia/genética , Hipoxia/patología , Contracción Muscular/efectos de los fármacos , Miografía , Placenta/patología , Preeclampsia/metabolismo , Preeclampsia/fisiopatología , Embarazo , Vasoconstricción/efectos de los fármacos , Vasoconstrictores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA