Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Neuroimage ; 247: 118829, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34923134

RESUMEN

Learning-induced neuroplastic changes, further modulated by content and setting, are mirrored in brain functional connectivity (FC). In animal models, selective serotonin reuptake inhibitors (SSRIs) have been shown to facilitate neuroplasticity. This is especially prominent during emotional relearning, such as fear extinction, which may translate to clinical improvements in patients. To investigate a comparable modulation of neuroplasticity in humans, 99 healthy subjects underwent three weeks of emotional (matching faces) or non-emotional learning (matching Chinese characters to unrelated German nouns). Shuffled pairings of the original content were subsequently relearned for the same time. During relearning, subjects received either a daily dose of the SSRI escitalopram or placebo. Resting-state functional magnetic resonance imaging was performed before and after the (re-)learning phases. FC changes in a network comprising Broca's area, the medial prefrontal cortex, the right inferior temporal and left lingual gyrus were modulated by escitalopram intake. More specifically, it increased the bidirectional connectivity between medial prefrontal cortex and lingual gyrus for non-emotional and the connectivity from medial prefrontal cortex to Broca's area for emotional relearning. The context dependence of these effects together with behavioral correlations supports the assumption that SSRIs in clinical practice improve neuroplasticity rather than psychiatric symptoms per se. Beyond expanding the complexities of learning, these findings emphasize the influence of external factors on human neuroplasticity.


Asunto(s)
Escitalopram/farmacología , Aprendizaje/efectos de los fármacos , Imagen por Resonancia Magnética/métodos , Plasticidad Neuronal/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Adulto , Austria , Método Doble Ciego , Emociones/efectos de los fármacos , Femenino , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador , Estudios Longitudinales , Masculino , Recuerdo Mental/efectos de los fármacos , Modelos Estadísticos
2.
Neuroimage ; 249: 118887, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34999203

RESUMEN

An essential core function of one's cognitive flexibility is the use of acquired knowledge and skills to adapt to ongoing environmental changes. Animal models have highlighted the influence serotonin has on neuroplasticity. These effects have been predominantly demonstrated during emotional relearning which is theorized as a possible model for depression. However, translation of these mechanisms is in its infancy. To this end, we assessed changes in effective connectivity at rest and during associative learning as a proxy of neuroplastic changes in healthy volunteers. 76 participants underwent 6 weeks of emotional or non-emotional (re)learning (face-matching or Chinese character-German noun matching). During relearning participants either self-administered 10 mg/day of the selective serotonin reuptake inhibitor (SSRI) escitalopram or placebo in a double-blind design. Associative learning tasks, resting-state and structural images were recorded before and after both learning phases (day 1, 21 and 42). Escitalopram intake modulated relearning changes in a network encompassing the right insula, anterior cingulate cortex and right angular gyrus. Here, the process of relearning during SSRI intake showed a greater decrease in effective connectivity from the right insula to both the anterior cingulate cortex and right angular gyrus, with increases in the opposite direction when compared to placebo. In contrast, intrinsic connections and those at resting-state were only marginally affected by escitalopram. Further investigation of gray matter volume changes in these functionally active regions revealed no significant SSRI-induced structural changes. These findings indicate that the right insula plays a central role in the process of relearning and SSRIs further potentiate this effect. In sum, we demonstrated that SSRIs amplify learning-induced effective connections rather than affecting the intrinsic task connectivity or that of resting-state.


Asunto(s)
Aprendizaje por Asociación , Conectoma , Corteza Insular , Red Nerviosa , Plasticidad Neuronal , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Adulto , Aprendizaje por Asociación/efectos de los fármacos , Aprendizaje por Asociación/fisiología , Citalopram/farmacología , Femenino , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/efectos de los fármacos , Giro del Cíngulo/fisiología , Humanos , Corteza Insular/diagnóstico por imagen , Corteza Insular/efectos de los fármacos , Corteza Insular/fisiología , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/efectos de los fármacos , Lóbulo Parietal/fisiología , Descanso , Inhibidores Selectivos de la Recaptación de Serotonina/administración & dosificación , Adulto Joven
3.
Neuroimage ; 204: 116244, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31606475

RESUMEN

Neural plasticity is a complex process dependent on neurochemical underpinnings. Next to the glutamatergic system which contributes to memory formation via long-term potentiation (LTP) and long-term depression (LTD), the main inhibitory neurotransmitter, GABA is crucially involved in neuroplastic processes. Hence, we investigated changes in glutamate and GABA levels in the brain in healthy participants performing an associative learning paradigm. Twenty healthy participants (10 female, 25 ±â€¯5 years) underwent paired multi-voxel magnetic resonance spectroscopy imaging before and after completing 21 days of a facial associative learning paradigm in a longitudinal study design. Changes of GABA and glutamate were compared to retrieval success in the hippocampus, insula and thalamus. No changes in GABA and glutamate concentration were found after 21 days of associative learning. However, baseline hippocampal GABA levels were significantly correlated with initial retrieval success (pcor = 0.013, r = 0.690). In contrast to the thalamus and insula (pcor>0.1), higher baseline GABA levels in the hippocampus were associated with better retrieval performance in an associative learning paradigm. Therefore, our findings support the importance of hippocampal GABA levels in memory formation in the human brain in vivo.


Asunto(s)
Aprendizaje por Asociación/fisiología , Hipocampo/metabolismo , Recuerdo Mental/fisiología , Ácido gamma-Aminobutírico/metabolismo , Adulto , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/metabolismo , Reconocimiento Facial/fisiología , Femenino , Ácido Glutámico/metabolismo , Hipocampo/diagnóstico por imagen , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Tálamo/diagnóstico por imagen , Tálamo/metabolismo , Adulto Joven
4.
Int J Neuropsychopharmacol ; 23(1): 20-25, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-31740958

RESUMEN

BACKGROUND: Treatment-resistant depression is among the most debilitating conditions in psychiatry. Recent studies have associated alterations in white matter microstructure measured with magnetic resonance imaging with poor antidepressant response. Therefore, the extent to which electroconvulsive therapy, the most effective therapeutic option for treatment-resistant depression, affects white matter microstructure warrants investigation. METHODS: A total 13 patients suffering from severe unipolar treatment-resistant depression underwent magnetic resonance imaging with a diffusion tensor imaging sequence before and after undergoing a series of right unilateral electroconvulsive therapy. Diffusivity metrics were compared voxel-wise using tract-based spatial statistics and repeated-measures ANOVA. RESULTS: A total 12 patients responded to electroconvulsive therapy and 9 were classified as remitters. An increase in axial diffusivity was observed in the posterior limb of the internal capsule of the right hemisphere (PFWE ≤ .05). The increase in this area was higher in the right compared with the left hemisphere (P < .05). No correlation of this effect with treatment response could be found. CONCLUSIONS: The strong lateralization of effects to the hemisphere of electrical stimulation suggests an effect of electroconvulsive therapy on diffusivity metrics which is dependent of electrode placement. Investigation in controlled studies is necessary to reveal to what extent the effects of electroconvulsive therapy on white matter microstructure are related to clinical outcomes and electrode placement.


Asunto(s)
Trastorno Depresivo Resistente al Tratamiento/diagnóstico por imagen , Trastorno Depresivo Resistente al Tratamiento/terapia , Imagen de Difusión Tensora , Terapia Electroconvulsiva , Sustancia Blanca/diagnóstico por imagen , Adolescente , Adulto , Femenino , Humanos , Cápsula Interna/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Adulto Joven
5.
Mol Psychiatry ; 24(5): 746-756, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-29422521

RESUMEN

Functional magnetic resonance imaging (fMRI) successfully disentangled neuronal pathophysiology of major depression (MD), but only a few fMRI studies have investigated correlates and predictors of remission. Moreover, most studies have used clinical outcome parameters from two time points, which do not optimally depict differential response times. Therefore, we aimed to detect neuronal correlates of response and remission in an antidepressant treatment study with 7 T fMRI, potentially harnessing advances in detection power and spatial specificity. Moreover, we modeled outcome parameters from multiple study visits during a 12-week antidepressant fMRI study in 26 acute (aMD) patients compared to 36 stable remitted (rMD) patients and 33 healthy control subjects (HC). During an electrical painful stimulation task, significantly higher baseline activity in aMD compared to HC and rMD in the medial thalamic nuclei of the pulvinar was detected (p = 0.004, FWE-corrected), which was reduced by treatment. Moreover, clinical response followed a sigmoid function with a plateau phase in the beginning, a rapid decline and a further plateau at treatment end. By modeling the dynamic speed of response with fMRI-data, perigenual anterior cingulate activity after treatment was significantly associated with antidepressant response (p < 0.001, FWE-corrected). Temporoparietal junction (TPJ) baseline activity significantly predicted non-remission after 2 antidepressant trials (p = 0.005, FWE-corrected). The results underline the importance of the medial thalamus, attention networks in MD and antidepressant treatment. Moreover, by using a sigmoid model, this study provides a novel method to analyze the dynamic nature of response and remission for future trials.


Asunto(s)
Depresión/diagnóstico por imagen , Trastorno Depresivo Mayor/diagnóstico por imagen , Pulvinar/diagnóstico por imagen , Adulto , Antidepresivos/uso terapéutico , Encéfalo/fisiopatología , Mapeo Encefálico/métodos , Depresión/tratamiento farmacológico , Depresión/fisiopatología , Trastorno Depresivo Mayor/tratamiento farmacológico , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Núcleo Talámico Mediodorsal/fisiopatología , Dolor/fisiopatología , Pulvinar/fisiopatología , Tálamo/fisiopatología , Adulto Joven
6.
Mol Psychiatry ; 24(5): 772, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-29520037

RESUMEN

The author list was presented as last name, first name. The names should have been listed as:Christoph Kraus, Manfred Klöbl, Martin Tik, Bastian Auer, Thomas Vanicek, Nicole Geissberger, Daniela M. Pfabigan, Andreas Hahn, Michael Woletz, Katharina Paul, Arkadiusz Komorowski, Siegfried Kasper, Christian Windischberger, Claus Lamm, Rupert Lanzenberger.

7.
Cereb Cortex ; 29(1): 372-382, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30357321

RESUMEN

Parcellation of distinct areas in the cerebral cortex has a long history in neuroscience and is of great value for the study of brain function, specialization, and alterations in neuropsychiatric disorders. Analysis of cytoarchitectonical features has revealed their close association with molecular profiles based on protein density. This provides a rationale for the use of in vivo molecular imaging data for parcellation of the cortex with the advantage of whole-brain coverage. In the current work, parcellation was based on expression of key players of the serotonin neurotransmitter system. Positron emission tomography was carried out for the quantification of serotonin 1A (5-HT1A, n = 30) and 5-HT2A receptors (n = 22), the serotonin-degrading enzyme monoamine oxidase A (MAO-A, n = 32) and the serotonin transporter (5-HTT, n = 24) in healthy participants. Cortical protein distribution maps were obtained using surface-based quantification. Based on k-means clustering, silhouette criterion and bootstrapping, five distinct clusters were identified as the optimal solution. The defined clusters proved of high explanatory value for the effects of psychotropic drugs acting on the serotonin system, such as antidepressants and psychedelics. Therefore, the proposed method constitutes a sensible approach towards integration of multimodal imaging data for research and development in neuropharmacology and psychiatry.


Asunto(s)
Corteza Cerebral/metabolismo , Monoaminooxidasa/metabolismo , Tomografía de Emisión de Positrones/métodos , Receptor de Serotonina 5-HT1A/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Adulto , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Imagen Molecular/métodos , Serotonina/metabolismo , Adulto Joven
8.
Int J Neuropsychopharmacol ; 22(8): 513-522, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31175352

RESUMEN

BACKGROUND: Studies investigating hippocampal volume changes after treatment with serotonergic antidepressants in patients with major depressive disorder yielded inconsistent results, and effects on hippocampal subfields are unclear. METHODS: To detail treatment effects on total hippocampal and subfield volumes, we conducted an open-label study with escitalopram followed by venlafaxine upon nonresponse in 20 unmedicated patients with major depressive disorder. Before and after 12 weeks treatment, we measured total hippocampal formation volumes and subfield volumes with ultra-high field (7 Tesla), T1-weighted, structural magnetic resonance imaging, and FreeSurfer. Twenty-eight remitted patients and 22 healthy subjects were included as controls. We hypothesized to detect increased volumes after treatment in major depressive disorder. RESULTS: We did not detect treatment-related changes of total hippocampal or subfield volumes in patients with major depressive disorder. Secondary results indicated that the control group of untreated, stable remitted patients, compared with healthy controls, had larger volumes of the right hippocampal-amygdaloid transition area and right fissure at both measurement time points. Depressed patients exhibited larger volumes of the right subiculum compared with healthy controls at MRI-2. Exploratory data analyses indicated lower baseline volumes in the subgroup of remitting (n = 10) vs nonremitting (n = 10) acute patients. CONCLUSIONS: The results demonstrate that monoaminergic antidepressant treatment in major depressive disorder patients was not associated with volume changes in hippocampal subfields. Studies with larger sample sizes to detect smaller effects as well as other imaging modalities are needed to further assess the impact of antidepressant treatment on hippocampal subfields.


Asunto(s)
Afecto/efectos de los fármacos , Antidepresivos de Segunda Generación/uso terapéutico , Citalopram/uso terapéutico , Trastorno Depresivo Mayor/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Imagen por Resonancia Magnética , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Inhibidores de Captación de Serotonina y Norepinefrina/uso terapéutico , Clorhidrato de Venlafaxina/uso terapéutico , Adolescente , Adulto , Austria , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/psicología , Sustitución de Medicamentos , Femenino , Hipocampo/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Inducción de Remisión , Resultado del Tratamiento , Adulto Joven
9.
Br J Psychiatry ; 214(3): 159-167, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30442205

RESUMEN

BACKGROUND: Electroconvulsive therapy (ECT) is the treatment of choice for severe mental illness including treatment-resistant depression (TRD). Increases in volume of the hippocampus and amygdala following ECT have consistently been reported.AimsTo investigate neuroplastic changes after ECT in specific hippocampal subfields and amygdala nuclei using high-resolution structural magnetic resonance imaging (MRI) (trial registration: clinicaltrials.gov - NCT02379767). METHOD: MRI scans were carried out in 14 patients (11 women, 46.9 years (s.d. = 8.1)) with unipolar TRD twice before and once after a series of right unilateral ECT in a pre-post study design. Volumes of subcortical structures, including subfields of the hippocampus and amygdala, and cortical thickness were extracted using FreeSurfer. The effect of ECT was tested using repeated-measures ANOVA. Correlations of imaging and clinical parameters were explored. RESULTS: Increases in volume of the right hippocampus by 139.4 mm3 (s.d. = 34.9), right amygdala by 82.3 mm3 (s.d. = 43.9) and right putamen by 73.9 mm3 (s.d. = 77.0) were observed. These changes were localised in the basal and lateral nuclei, and the corticoamygdaloid transition area of the amygdala, the hippocampal-amygdaloid transition area and the granule cell and molecular layer of the dentate gyrus. Cortical thickness increased in the temporal, parietal and insular cortices of the right hemisphere. CONCLUSIONS: Following ECT structural changes were observed in hippocampal subfields and amygdala nuclei that are specifically implicated in the pathophysiology of depression and stress-related disorders and retain a high potential for neuroplasticity in adulthood.Declaration of interestS.K. has received grants/research support, consulting fees and/or honoraria within the past 3 years from Angelini, AOP Orphan Pharmaceuticals AG, AstraZeneca, Celegne GmbH, Eli Lilly, Janssen-Cilag Pharma GmbH, KRKA-Pharma, Lundbeck A/S, Neuraxpharm, Pfizer, Pierre Fabre, Schwabe and Servier. R.L. received travel grants and/or conference speaker honoraria from Shire, AstraZeneca, Lundbeck A/S, Dr. Willmar Schwabe GmbH, Orphan Pharmaceuticals AG, Janssen-Cilag Pharma GmbH, and Roche Austria GmbH.


Asunto(s)
Amígdala del Cerebelo/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Trastorno Depresivo Resistente al Tratamiento/terapia , Hipocampo/diagnóstico por imagen , Adulto , Trastorno Depresivo Resistente al Tratamiento/diagnóstico por imagen , Terapia Electroconvulsiva , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tamaño de los Órganos , Resultado del Tratamiento
10.
Neuroimage ; 168: 383-391, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28108394

RESUMEN

Functional neuroimaging of the human amygdala has been of great interest to uncover the neural underpinnings of emotions, mood, motivation, social cognition, and decision making, as well as their dysfunction in psychiatric disorders. Yet, several factors limit in vivo imaging of amygdalar function, most importantly its location deep within the temporal lobe adjacent to air-filled cavities that cause magnetic field inhomogeneities entailing signal dropouts. Additionally, the amygdala and the extended amygdalar region consist of several substructures, which have been assigned different functions and have important implications for functional and effective connectivity studies. Here we show that high-resolution ultra-high field fMRI at 7T can be used to overcome these fundamental challenges for acquisition and can meet some of the demands posed by the complex neuroanatomy and -physiology in this region. Utilizing the inherently high SNR, we use an optimized preprocessing and data analysis strategy to demonstrate that imaging of the (extended) amygdala is highly reliable and robust. Using unsmoothed single-subject data allowed us to differentiate brain activation during processing of emotional faces in the central and basolateral amygdala and, for the first time, in the bed nucleus of the stria terminalis (BNST), which is critically involved in the neural mechanisms of anxiety and threat monitoring. We also provide a quantitative assessment of single subject sensitivity, which is relevant for connectivity studies that rely on time course extraction of functionally-defined volumes of interest.


Asunto(s)
Amígdala del Cerebelo/diagnóstico por imagen , Emociones/fisiología , Expresión Facial , Reconocimiento Facial/fisiología , Neuroimagen Funcional/métodos , Imagen por Resonancia Magnética/métodos , Núcleos Septales/diagnóstico por imagen , Adulto , Femenino , Humanos , Masculino , Adulto Joven
11.
Neuroimage ; 181: 323-330, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29966719

RESUMEN

INTRODUCTION: The brain's energy budget can be non-invasively assessed with different imaging modalities such as functional MRI (fMRI) and PET (fPET), which are sensitive to oxygen and glucose demands, respectively. The introduction of hybrid PET/MRI systems further enables the simultaneous acquisition of these parameters. Although a recently developed method offers the quantification of task-specific changes in glucose metabolism (CMRGlu) in a single measurement, direct comparison of the two imaging modalities is still difficult because of the different temporal resolutions. Thus, we optimized the protocol and systematically assessed shortened task durations of fPET to approach that of fMRI. METHODS: Twenty healthy subjects (9 male) underwent one measurement on a hybrid PET/MRI scanner. During the scan, tasks were completed in four blocks for fMRI (4 × 30 s blocks) and fPET: participants tapped the fingers of their right hand repeatedly to the thumb while watching videos of landscapes. For fPET, subjects were randomly assigned to groups of n = 5 with varying task durations of 10, 5, 2 and 1 min, where task durations were kept constant within a measurement. The radiolabeled glucose analogue [18F]FDG was administered as 20% bolus plus constant infusion. The bolus increases the signal-to-noise ratio and leaves sufficient activity to detect task-related effects but poses additional challenges due to a discontinuity in the tracer uptake. First, three approaches to remove task effects from the baseline term were evaluated: (1) multimodal, based on the individual fMRI analysis, (2) atlas-based by removing presumably activated regions and (3) model-based by fitting the baseline with exponential functions. Second, we investigated the need to capture the arterial input function peak with automatic blood sampling for the quantification of CMRGlu. We finally compared the task-specific activation obtained from fPET and fMRI qualitatively and statistically. RESULTS: CMRGlu quantified only with manual arterial samples showed a strong correlation to that obtained with automatic sampling (r = 0.9996). The multimodal baseline definition was superior to the other tested approaches in terms of residuals (p < 0.001). Significant task-specific changes in CMRGlu were found in the primary visual and motor cortices (tM1 = 18.7 and tV1 = 18.3). Significant changes of fMRI activation were found in the same areas (tM1 = 16.0 and tV1 = 17.6) but additionally in the supplementary motor area, ipsilateral motor cortex and secondary visual cortex. Post-hoc t-tests showed strongest effects for task durations of 5 and 2 min (all p < 0.05 FWE corrected), whereas 1 min exhibited pronounced unspecific activation. Percent signal change (PSC) was higher for CMRGlu (∼18%-27%) compared to fMRI (∼2%). No significant association between PSC of task-specific CMRGlu and fMRI was found (r = 0.26). CONCLUSION: Using a bolus plus constant infusion protocol, the necessary task duration for reliable quantification of task-specific CMRGlu could be reduced to 5 and 2 min, therefore, approaching that of fMRI. Important for valid quantification is a correct baseline definition, which was ideal when task-relevant voxels were determined with fMRI. The absence of a correlation and the different activation pattern between fPET and fMRI suggest that glucose metabolism and oxygen demand capture complementary aspects of energy demands.


Asunto(s)
Fluorodesoxiglucosa F18/administración & dosificación , Neuroimagen Funcional/métodos , Imagen por Resonancia Magnética/métodos , Corteza Motora/fisiología , Tomografía de Emisión de Positrones/métodos , Desempeño Psicomotor/fisiología , Radiofármacos/administración & dosificación , Corteza Visual/fisiología , Adulto , Femenino , Fluorodesoxiglucosa F18/farmacocinética , Humanos , Masculino , Corteza Motora/diagnóstico por imagen , Corteza Motora/metabolismo , Imagen Multimodal , Radiofármacos/farmacocinética , Corteza Visual/diagnóstico por imagen , Corteza Visual/metabolismo , Adulto Joven
12.
Hum Brain Mapp ; 38(2): 792-802, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27770470

RESUMEN

Altered serotonergic neurotransmission has been found to cause impulsive and aggressive behavior, as well as increased motor activity, all exemplifying key symptoms of ADHD. The main objectives of this positron emission tomography (PET) study were to investigate the serotonin transporter binding potential (SERT BPND ) in patients with ADHD and to assess associations of SERT BPND between the brain regions. 25 medication-free patients with ADHD (age ± SD; 32.39 ± 10.15; 10 females) without any psychiatric comorbidity and 25 age and sex matched healthy control subjects (33.74 ± 10.20) were measured once with PET and the highly selective and specific radioligand [11 C]DASB. SERT BPND maps in nine a priori defined ROIs exhibiting high SERT binding were compared between groups by means of a linear mixed model. Finally, adopted from structural and functional connectivity analyses, we performed correlational analyses using regional SERT binding potentials to examine molecular interregional associations between all selected ROIs. We observed significant differences in the interregional correlations between the precuneus and the hippocampus in patients with ADHD compared to healthy controls, using SERT BPND of the investigated ROIs (P < 0.05; Bonferroni corrected). When correlating SERT BPND and age in the ADHD and the healthy control group, we confirmed an age-related decline in brain SERT binding in the thalamus and insula (R2 = 0.284, R2 = 0.167, Ps < 0.05; Bonferroni corrected). The results show significantly different interregional molecular associations of the SERT expression for the precuneus with hippocampus in patients with ADHD, indicating presumably altered functional coupling. Altered interregional coupling between brain regions might be a sensitive approach to demonstrate functional and molecular alterations in psychiatric conditions. Hum Brain Mapp 38:792-802, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Encéfalo/diagnóstico por imagen , Tomografía de Emisión de Positrones , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Adulto , Encéfalo/metabolismo , Estudios de Casos y Controles , Femenino , Humanos , Modelos Lineales , Masculino , Escalas de Valoración Psiquiátrica , Adulto Joven
13.
Int J Psychiatry Clin Pract ; 21(1): 2-12, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28097909

RESUMEN

OBJECTIVE: Clinical trials demonstrated that ketamine exhibits rapid antidepressant efficacy when administered in subanaesthetic dosages. We reviewed currently available literature investigating efficacy, response rates and safety profile. METHODS: Twelve studies investigating unipolar, seven on bipolar depression were included after search in medline, scopus and web of science. RESULTS: Randomized, placebo-controlled or open-label trials reported antidepressant response rates after 24 h on primary outcome measures at 61%. The average reduction of Hamilton Depression Rating Scale (HAM-D) was 10.9 points, Beck Depression Inventory (BDI) 15.7 points and Montgomery-Asberg Depression Rating Scale (MADRS) 20.8 points. Ketamine was always superior to placebo. Most common side effects were dizziness, blurred vision, restlessness, nausea/vomiting and headache, which were all reversible. Relapse rates ranged between 60% and 92%. To provide best practice-based information to patients, a consent-form for application and modification in local language is included. CONCLUSIONS: Ketamine constitutes a novel, rapid and efficacious treatment option for patients suffering from treatment resistant depression and exhibits rapid and significant anti-suicidal effects. New administration routes might serve as alternative to intravenous regimes for potential usage in outpatient settings. However, long-term side effects are not known and short duration of antidepressant response need ways to prolong ketamine's efficacy.


Asunto(s)
Trastorno Bipolar/tratamiento farmacológico , Trastorno Depresivo/tratamiento farmacológico , Antagonistas de Aminoácidos Excitadores/farmacología , Ketamina/farmacología , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Antagonistas de Aminoácidos Excitadores/efectos adversos , Humanos , Ketamina/administración & dosificación , Ketamina/efectos adversos
14.
Hum Brain Mapp ; 37(5): 1738-48, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26876303

RESUMEN

Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high-dose hormone application in adult female-to-male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel-based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting-state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone-dependent neuroplastic adaptations in adulthood within language-specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738-1748, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Mapeo Encefálico , Área de Broca/efectos de los fármacos , Lenguaje , Testosterona/farmacología , Área de Wernicke/efectos de los fármacos , Adulto , Área de Broca/diagnóstico por imagen , Área de Broca/fisiología , Femenino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/efectos de los fármacos , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Neuroimagen , Área de Wernicke/diagnóstico por imagen , Área de Wernicke/fisiología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/efectos de los fármacos , Adulto Joven
15.
Hum Brain Mapp ; 37(3): 884-95, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26678348

RESUMEN

Attention deficit hyperactivity disorder (ADHD) is a heterogeneous disorder with a strong genetic component. The norepinephrine transporter (NET) is a key target for ADHD treatment and the NET gene has been of high interest as a possible modulator of ADHD pathophysiology. Therefore, we conducted an imaging genetics study to examine possible effects of single nucleotide polymorphisms (SNPs) within the NET gene on NET nondisplaceable binding potential (BPND ) in patients with ADHD and healthy controls (HCs). Twenty adult patients with ADHD and 20 HCs underwent (S,S)-[18F]FMeNER-D2 positron emission tomography (PET) and were genotyped on a MassARRAY MALDI-TOF platform using the Sequenom iPLEX assay. Linear mixed models analyses revealed a genotype-dependent difference in NET BPND between groups in the thalamus and cerebellum. In the thalamus, a functional promoter SNP (-3081 A/T) and a 5'-untranslated region (5'UTR) SNP (-182 T/C), showed higher binding in ADHD patients compared to HCs depending on the major allele. Furthermore, we detected an effect of genotype in HCs, with major allele carriers having lower binding. In contrast, for two 3'UTR SNPs (*269 T/C, *417 A/T), ADHD subjects had lower binding in the cerebellum compared to HCs depending on the major allele. Additionally, symptoms of hyperactivity and impulsivity correlated with NET BPND in the cerebellum depending on genotype. Symptoms correlated positively with cerebellar NET BPND for the major allele, while symptoms correlated negatively to NET BPND in minor allele carriers. Our findings support the role of genetic influence of the NE system on NET binding to be pertubated in ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Adulto , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Mapeo Encefálico , Estudios de Cohortes , Femenino , Técnicas de Genotipaje , Humanos , Desequilibrio de Ligamiento , Masculino , Morfolinas , Polimorfismo de Nucleótido Simple , Tomografía de Emisión de Positrones , Regiones Promotoras Genéticas , Radiofármacos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
16.
Hum Brain Mapp ; 36(10): 4053-63, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26178250

RESUMEN

Functional connectivity analysis of brain networks has become an important tool for investigation of human brain function. Although functional connectivity computations are usually based on resting-state data, the application to task-specific fMRI has received growing attention. Three major methods for extraction of resting-state data from task-related signal have been proposed (1) usage of unmanipulated task data for functional connectivity; (2) regression against task effects, subsequently using the residuals; and (3) concatenation of baseline blocks located in-between task blocks. Despite widespread application in current research, consensus on which method best resembles resting-state seems to be missing. We, therefore, evaluated these techniques in a sample of 26 healthy controls measured at 7 Tesla. In addition to continuous resting-state, two different task paradigms were assessed (emotion discrimination and right finger-tapping) and five well-described networks were analyzed (default mode, thalamus, cuneus, sensorimotor, and auditory). Investigating the similarity to continuous resting-state (Dice, Intraclass correlation coefficient (ICC), R(2) ) showed that regression against task effects yields functional connectivity networks most alike to resting-state. However, all methods exhibited significant differences when compared to continuous resting-state and similarity metrics were lower than test-retest of two resting-state scans. Omitting global signal regression did not change these findings. Visually, the networks are highly similar, but through further investigation marked differences can be found. Therefore, our data does not support referring to resting-state when extracting signals from task designs, although functional connectivity computed from task-specific data may indeed yield interesting information.


Asunto(s)
Actividad Motora/fisiología , Desempeño Psicomotor/fisiología , Descanso/fisiología , Adulto , Mapeo Encefálico , Circulación Cerebrovascular , Discriminación en Psicología/fisiología , Emociones , Femenino , Dedos , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Adulto Joven
17.
Int J Neuropsychopharmacol ; 18(9)2015 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-25896256

RESUMEN

BACKGROUND: Schizophrenia has been associated with disturbances of thalamic functioning. In light of recent evidence suggesting a significant impact of the glutamatergic system on key symptoms of schizophrenia, we assessed whether modulation of the glutamatergic system via blockage of the N-methyl-D-aspartate (NMDA)-receptor might lead to changes of thalamic functional connectivity. METHODS: Based on the ketamine model of psychosis, we investigated changes in cortico-thalamic functional connectivity by intravenous ketamine challenge during a 55-minute resting-state scan. Thirty healthy volunteers were measured with pharmacological functional magnetic resonance imaging using a double-blind, randomized, placebo-controlled, crossover design. RESULTS: Functional connectivity analysis revealed significant ketamine-specific changes within the thalamus hub network, more precisely, an increase of cortico-thalamic connectivity of the somatosensory and temporal cortex. CONCLUSIONS: Our results indicate that changes of thalamic functioning as described for schizophrenia can be partly mimicked by NMDA-receptor blockage. This adds substantial knowledge about the neurobiological mechanisms underlying the profound changes of perception and behavior during the application of NMDA-receptor antagonists.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/farmacología , Ketamina/farmacología , Red Nerviosa/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Esquizofrenia/inducido químicamente , Corteza Somatosensorial/efectos de los fármacos , Lóbulo Temporal/efectos de los fármacos , Tálamo/efectos de los fármacos , Adulto , Método Doble Ciego , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Femenino , Voluntarios Sanos , Humanos , Ketamina/administración & dosificación , Masculino , Red Nerviosa/fisiopatología , Esquizofrenia/fisiopatología , Corteza Somatosensorial/fisiopatología , Lóbulo Temporal/fisiopatología , Tálamo/fisiopatología , Adulto Joven
18.
Transl Psychiatry ; 14(1): 42, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242882

RESUMEN

Defying the COVID-19 pandemic required restriction measures of unprecedented scale, that may induce and exacerbate psychiatric symptoms across the population. We aimed to assess in vivo dynamic effects of mitigation strategies on human brain neurobiology, neuroplastic as well as psychometric parameters. Three structural magnetic resonance imaging measurements, serum brain-derived neurotrophic factor (sBDNF) analyses, and psychometric assessments (Beck Depression Inventory-II and Perceived Stress Questionnaire-20) were performed in healthy individuals and patients with a recurrent major depressive disorder in the period from September 2020 to July 2021. Group differences and changes over time in structural imaging, neuroplastic and psychometric parameters were assessed with linear mixed models. Analysis of data from 18 patients with a recurrent major depressive disorder and 28 healthy individuals showed clinically relevant scores for depression and stress in the patient group as well as significant cross-sectional differences in depression scores (F = 30.89, p < 0.001) and three subscales of the Perceived Stress Questionnaire (Worries: F = 19.19, p < 0.001, Tension: F = 34.44, p < 0.001, Joy: F = 12.05, p = 0.001). Linear mixed models revealed no significant changes over time in cortical thickness of the prefrontal cortex, anterior cingulate cortex, hippocampus, and amygdala (F = 0.29, p > 0.1) and no interaction with group (F = 0.28, p > 0.1). Further, analysis revealed no main effect of time and no interaction of time x group in depressive symptoms, perceived stress subscales, and sBDNF (all p > 0.1). Despite the limited sample size, the strength of this investigation lies in the multimodal assessment of peri-pandemic lockdown effects. Nine months of varying restrictions measures did not result in observable changes in brain morphology nor impact depressive symptoms in either psychiatric patients with a recurrent major depressive disorder or healthy individuals. While these neurobiological and psychometric data stand in contrast to initial expectations about the effects of restriction measures, they might inform future investigations of longitudinal effects of restriction measures on mental health.


Asunto(s)
COVID-19 , Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/psicología , Pandemias , Psicometría , Estudios Transversales , Neurobiología , Control de Enfermedades Transmisibles , Depresión/patología
19.
J Affect Disord ; 324: 660-669, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36603604

RESUMEN

BACKGROUND: Previous studies suggest that transcranial magnetic stimulation exerts antidepressant effects by altering functional connectivity (FC). However, knowledge about this mechanism is still limited. Here, we aimed to investigate the effect of bilateral sequential theta-burst stimulation (TBS) on FC in treatment-resistant depression (TRD) in a sham-controlled longitudinal study. METHODS: TRD patients (n = 20) underwent a three-week treatment of intermittent TBS of the left and continuous TBS of the right dorsolateral prefrontal cortex (DLPFC). Upon this trial's premature termination, 15 patients had received active TBS and five patients sham stimulation. Resting-state functional magnetic resonance imaging was performed at baseline and after treatment. FC (left and right DLPFC) was estimated for each participant, followed by group statistics (t-tests). Furthermore, depression scores were analyzed (linear mixed models analysis) and tested for correlation with FC. RESULTS: Both groups exhibited reductions of depression scores, however, there was no significant main effect of group, or group and time. Anticorrelations between DLPFC and the subgenual cingulate cortex (sgACC) were observed for baseline FC, corresponding to changes in depression severity. Treatment did not significantly change DLPFC-sgACC connectivity, but significantly reduced FC between the left stimulation target and bilateral anterior insula. CONCLUSIONS: Our data is compatible with previous reports on the relevance of anticorrelation between DLPFC and sgACC for treatment success. Furthermore, FC changes between left DLPFC and bilateral anterior insula highlight the effect of TBS on the salience network. LIMITATIONS: Due to the limited sample size, results should be interpreted with caution and are of exploratory nature.


Asunto(s)
Corteza Prefrontal , Estimulación Magnética Transcraneal , Humanos , Depresión , Giro del Cíngulo , Estudios Longitudinales , Imagen por Resonancia Magnética/métodos , Estimulación Magnética Transcraneal/métodos
20.
Transl Psychiatry ; 13(1): 33, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36725835

RESUMEN

Theta-burst stimulation (TBS) represents a brain stimulation technique effective for treatment-resistant depression (TRD) as underlined by meta-analyses. While the methodology undergoes constant refinement, bilateral stimulation of the dorsolateral prefrontal cortex (DLPFC) appears promising to restore left DLPFC hypoactivity and right hyperactivity found in depression. The post-synaptic inhibitory serotonin-1A (5-HT1A) receptor, also occurring in the DLPFC, might be involved in this mechanism of action. To test this hypothesis, we performed PET-imaging using the tracer [carbonyl-11C]WAY-100635 including arterial blood sampling before and after a three-week treatment with TBS in 11 TRD patients compared to sham stimulation (n = 8 and n = 3, respectively). Treatment groups were randomly assigned, and TBS protocol consisted of excitatory intermittent TBS to the left and inhibitory continuous TBS to the right DLPFC. A linear mixed model including group, hemisphere, time, and Hamilton Rating Scale for Depression (HAMD) score revealed a 3-way interaction effect of group, time, and HAMD on specific distribution volume (VS) of 5-HT1A receptor. While post-hoc comparisons showed no significant changes of 5-HT1A receptor VS in either group, higher 5-HT1A receptor VS after treatment correlated with greater difference in HAMD (r = -0.62). The results of this proof-of-concept trial hint towards potential effects of TBS on the distribution of the 5-HT1A receptor. Due to the small sample size, all results must, however, be regarded with caution.


Asunto(s)
Corteza Prefontal Dorsolateral , Serotonina , Humanos , Depresión , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiología , Receptor de Serotonina 5-HT1A , Estimulación Magnética Transcraneal/métodos , Prueba de Estudio Conceptual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA