Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 55(11): 5445-52, 2016 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-27159119

RESUMEN

The solubility of zirconium (Zr) in the Nb4AlC3 host lattice was investigated by combining the experimental synthesis of (Nbx, Zr1-x)4AlC3 solid solutions with density functional theory calculations. High-purity solid solutions were prepared by reactive hot pressing of NbH0.89, ZrH2, Al, and C starting powder mixtures. The crystal structure of the produced solid solutions was determined using X-ray and neutron diffraction. The limited Zr solubility (maximum of 18.5% of the Nb content in the host lattice) in Nb4AlC3 observed experimentally is consistent with the calculated minimum in the energy of mixing. The lattice parameters and microstructure were evaluated over the entire solubility range, while the chemical composition of (Nb0.85, Zr0.15)4AlC3 was mapped using atom probe tomography. The hardness, Young's modulus, and fracture toughness at room temperature as well as the high-temperature flexural strength and E-modulus of (Nb0.85, Zr0.15)4AlC3 were investigated and compared to those of pure Nb4AlC3. Quite remarkably, an appreciable increase in fracture toughness was observed from 6.6 ± 0.1 MPa/m(1/2) for pure Nb4AlC3 to 10.1 ± 0.3 MPa/m(1/2) for the (Nb0.85, Zr0.15)4AlC3 solid solution.

2.
J Adhes Dent ; 18(2): 161-71, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27022645

RESUMEN

PURPOSE: To assess the light irradiance (LI) delivered by two light-curing units and to measure the degree of conversion (DC) of three composite cements and one flowable composite when cured through zirconia or ceramic-veneered zirconia plates with different thicknesses. MATERIALS AND METHODS: Three dual-curing composite cements (Clearfil Esthetic Cement, Panavia F2.0, G-CEM LinkAce) and one light-curing flowable composite (G-aenial Universal Flo) were investigated. Nine different kinds of zirconia plates were prepared from three zirconia grades (YSZ: Aadva and KATANA; Ce-TZP/Al2O3: NANOZR) in three different thicknesses (0.5- and 1.5-mm-thick zirconia, and 0.5-mm-thick zirconia veneered with a 1.0-mm-thick veneering ceramic). Portions of the mixed composite cements and the flowable composite were placed on a light spectrometer to measure LI while being light cured through the zirconia plates for 40 s using two light-curing units (n = 5). After light curing, micro-Raman spectra of the composite films were acquired to determine DC at 5 and 10 min, 1 and 24 h, and at 1 week. RESULTS: The zirconia grade and the thickness of the zirconia/veneered zirconia plates significantly decreased LI. Increased LI did not increase DC. Only the Ce-TZP/Al2O3 (NANOZR) zirconia was too opaque to allow sufficient light transmission and resulted in significantly lower DC. CONCLUSION: Although zirconia-based restorations attenuate the LI of light-curing units, the composite cements and the flowable composite could be light cured through the YSZ zirconia. LI is too low through Ce-TZP/Al2O3 zirconia, necessitating the use of self-/dual-curing composite cements.


Asunto(s)
Resinas Compuestas/efectos de la radiación , Materiales Dentales/efectos de la radiación , Luz , Cementos de Resina/efectos de la radiación , Circonio/química , Óxido de Aluminio/química , Cerámica/química , Cerámica/efectos de la radiación , Cerio/química , Resinas Compuestas/química , Luces de Curación Dental/clasificación , Materiales Dentales/química , Coronas con Frente Estético , Humanos , Curación por Luz de Adhesivos Dentales/instrumentación , Ensayo de Materiales , Metacrilatos/química , Microespectrofotometría , Polietilenglicoles/química , Polimerizacion , Ácidos Polimetacrílicos/química , Poliuretanos/química , Dosis de Radiación , Cementos de Resina/química , Dispersión de Radiación , Espectrometría Raman , Propiedades de Superficie , Itrio/química
3.
J Adhes Dent ; 17(3): 235-42, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26114165

RESUMEN

PURPOSE: To evaluate the effect of different mechanical pre-treatments on the bond durability to dental zirconia. MATERIALS AND METHODS: Fully sintered IPS e.max ZirCAD (Ivoclar Vivadent) blocks were randomly assigned to one of 4 groups: (1) kept as-sintered (control), (2) sandblasted with 50-µm Al2O3(Danville), or tribochemically silica sandblasted using (3) CoJet (3M ESPE) and (4) SilJet (Danville). The zirconia specimens were additionally pre-treated chemically using a 10-MDP/silane ceramic primer (Clearfil Ceramic Primer, Kuraray Noritake). Two identically pre-treated zirconia blocks were bonded together using resin-composite cement (RelyX Ultimate, 3M ESPE). The specimens were trimmed at the interface to a cylindrical hourglass shape and stored in distilled water (7 days, 37°C), after which they were randomly tested as is or subjected to additional mechanical aging involving cyclic tensile stress (10 N, 10 Hz, 10,000 cycles). Subsequently, the microtensile bond strength was determined and SEM fractographic analysis performed. RESULTS: Weibull analysis revealed the highest Weibull scale and shape parameters when zirconia was tribochemically silica sandblasted using either CoJet or SilJet. The Weibull shape parameter of Al2O3-sandblasted zirconia was significantly reduced upon mechanical aging, but not when zirconia was tribochemically silica sandblasted. CONCLUSION: The mechanical surface pre-treatment of zirconia using tribochemical silica sandblasting (CoJet, SilJet) resulted in the most favorable bond durability of a resin-composite cement (RelyX Ultimate) to dental zirconia before and after aging.


Asunto(s)
Cerámica/química , Recubrimiento Dental Adhesivo , Grabado Dental/métodos , Materiales Dentales/química , Itrio/química , Circonio/química , Óxido de Aluminio/química , Módulo de Elasticidad , Humanos , Ensayo de Materiales , Metacrilatos/química , Microscopía Electrónica de Rastreo , Distribución Aleatoria , Cementos de Resina/química , Silanos/química , Dióxido de Silicio/química , Estrés Mecánico , Propiedades de Superficie , Temperatura , Resistencia a la Tracción , Agua/química
4.
Materials (Basel) ; 14(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923495

RESUMEN

Recently, the use of novel CuCr1 surface-modified powder for reliable laser powder-bed fusion (LPBF) manufacturing has been proposed, enabling a broader LPBF processing window and longer powder storage life. Nevertheless, virgin CuCr1 powder is also LPBF processable, on the condition that a high-energy density is employed. In this work, we compare two dense specimens produced from virgin and surface-modified CuCr1 powder. Furthermore, a third sample fabricated from surface-modified powder is characterized to understand an abnormal porosity content initially detected through Archimedes testing. Utilizing high-resolution micro-CT scans, the nature of the defects present in the different samples is revealed. Pores are analyzed in terms of size, morphology and spatial distribution. The micro-CT data reveal that the virgin CuCr1 dense specimen displays keyhole pores plus pit cavities spanning multiple layer thicknesses. On the other hand, the sample fabricated with the surface-modified CuCr1 powder mainly contains small and spherical equi-distributed metallurgical defects. Finally, the CT analysis of the third specimen reveals the presence of a W contamination, favoring lack-of-fusion pores between subsequent LPBF layers. The LPBF melting mode (keyhole or conductive), the properties of the material, and the potential presence of contaminants are connected to the different porosity types and discussed.

5.
Sci Rep ; 10(1): 10523, 2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32601438

RESUMEN

This work demonstrates a successful in situ method capable of producing an ultra-strong novel Ti composite without aluminium and vanadium. In this method, selective laser melting is used to conduct in situ alloying and reinforcing of a Ti/10.5 wt% Mo2C powder mixture. It is shown that this leads to a metastable ß-Ti matrix homogeneously reinforced by high aspect ratio, 50-200 nm wide and up to several micrometre long TiC whiskers. The transformations of the phases are controlled by decomposition, dissolution, diffusion, and reformation of constituents. The whisker morphology of in situ formed TiC particles is associated with directional crystal growth along the TiC<110> direction. The developed TiC reinforced ß-Ti alloy combines a hardness over 500 HV, a Young's modulus of 126 GPa, and an ultimate compressive strength of 1642 MPa. Improving the ductility of this composite is the subject of another work.

6.
Materials (Basel) ; 12(15)2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-31382542

RESUMEN

The addition of 0.1 wt % carbon nanoparticles significantly improved the optical absorption and flowability of gas-atomized copper powder. This facilitated selective laser melting (SLM) by reducing the required laser energy density to obtain 98% dense parts. Moreover, the carbon addition led to an in situ de-oxidation of the copper parts during the SLM process. The properties of the as-built copper parts were limited to a tensile strength of 125 MPa, a ductility of 3%, and an electrical conductivity of 22.7 × 106 S/m, despite the advantageous effect of carbon on the powder characteristics and SLM behavior. The modest mechanical properties were associated with the segregation of carbon nanoparticles and other impurities, such as phosphorus and oxygen along grain boundaries of epitaxially grown grains. Whereas, the low electrical conductivity was mainly attributed to the phosphorus impurity in solid-solution with copper.

7.
Dent Mater ; 33(4): e147-e154, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28077209

RESUMEN

OBJECTIVE: To assess the influence of surface treatment and thermal annealing on the four-point bending strength of two ground dental zirconia grades. METHODS: Fully-sintered zirconia specimens (4.0×3.0×45.0mm3) of Y-TZP zirconia (LAVA Plus, 3M ESPE) and Y-TZP/Al2O3 zirconia (ZirTough, Kuraray Noritake) were subjected to four surface treatments: (1) 'GROUND': all surfaces were ground with a diamond-coated grinding wheel on a grinding machine; (2) 'GROUND+HEAT': (1) followed by annealing at 1100°C for 30min; (3) 'GROUND+Al2O3 SANDBLASTED': (1) followed by sandblasting using Al2O3; (4) 'GROUND+CoJet SANDBLASTED': (1) followed by tribochemical silica (CoJet) sandblasting. Micro-Raman spectroscopy was used to assess the zirconia-phase composition and potentially induced residual stress. The four-point bending strength was measured using a universal material-testing machine. RESULTS: Weibull analysis revealed a substantially higher Weibull modulus and slightly higher characteristic strength for ZirTough (Kuraray Noritake) than for LAVA Plus (3M ESPE). For both zirconia grades, the 'GROUND' zirconia had the lowest Weibull modulus in combination with a high characteristic strength. Sandblasting hardly changed the bending strength but substantially increased the Weibull modulus of the ground zirconia, whereas a thermal treatment increased the Weibull modulus of both zirconia grades but resulted in a significantly lower bending strength. Micro-Raman analysis revealed a higher residual compressive surface stress that correlated with an increased bending strength. SIGNIFICANCE: Residual compressive surface stress increased the bending strength of dental zirconia. Thermal annealing substantially reduced the bending strength but increased the consistency (reliability) of 'GROUND' zirconia.


Asunto(s)
Porcelana Dental , Circonio , Materiales Dentales , Análisis del Estrés Dental , Ensayo de Materiales , Reproducibilidad de los Resultados , Estrés Mecánico , Propiedades de Superficie , Itrio
8.
Acta Biomater ; 16: 215-22, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25662163

RESUMEN

Latest trends in dental restorative ceramics involve the development of full-contour 3Y-TZP ceramics which can avoid chipping of veneering porcelains. Among the challenges are the low translucency and the hydrothermal stability of 3Y-TZP ceramics. In this work, different trivalent oxides (Al2O3, Sc2O3, Nd2O3 and La2O3) were selected to dope 3Y-TZP ceramics. Results show that dopant segregation was a key factor to design hydrothermally stable and high-translucent 3Y-TZP ceramics and the cation dopant radius could be used as a controlling parameter. A large trivalent dopant, oversized as compared to Zr(4+), exhibiting strong segregation at the ZrO2 grain boundary was preferred. The introduction of 0.2 mol% La2O3 in conventional 0.1-0.25 wt.% Al2O3-doped 3Y-TZP resulted in an excellent combination of high translucency and superior hydrothermal stability, while retaining excellent mechanical properties.


Asunto(s)
Cerámica/química , Restauración Dental Permanente , Itrio/química , Circonio/química , Cationes , Cristalización , Dureza , Cinética , Lantano/química , Óxidos/química , Tamaño de la Partícula , Factores de Tiempo
9.
Dent Mater ; 31(2): 182-94, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25572860

RESUMEN

UNLABELLED: The influence of surface treatment on the low-temperature degradation (LTD) of tetragonal zirconia polycrystalline (TZP) is still unclear. OBJECTIVES: The effect of surface treatments on the LTD behavior of zirconia was investigated. METHODS: Fully-sintered specimens of seven commercial dental zirconia (Aadva, GC; In-CeramYZ, VITA; IPS e.max ZirCAD, Ivoclar Vivadent; LAVA Frame and LAVA Plus, 3M ESPE; NANOZR, Panasonic; ZirTough, Kuraray Noritake) were provided by the manufacturers with specimen dimensions of approximately 10mm×5mm×3mm. For each zirconia grade, samples were kept 'as sintered' (untreated) or were subjected to one of the three surface treatments: rough polished, sandblasted with Al2O3, tribochemical silica sandblasted (n=3/group). The tetragonal to monoclinic transformation was evaluated by X-ray diffraction at several intervals during LTD testing up to 40h in steam in an autoclave (134°C, 2bar). RESULTS: The five yttria-stabilized TZP (Y-TZP: Aadva, In-CeramYZ, IPS e.max ZirCAD, LAVA Frame, LAVA Plus) zirconia showed a similar trend in LTD behavior. The Al2O3 sandblasted zirconia showed the highest monoclinic volume fraction. The as sintered (untreated) zirconia degraded faster than the surface-treated zirconia. Although the surface-treated ceria-stabilized TZP/alumina (Ce-TZP/Al2O3: NANOZR) zirconia had a higher initial monoclinic volume fraction compared to the Y-TZP zirconia, it showed a stronger aging resistance. The as sintered (untreated) Y-TZP/alumina (Y-TZP/Al2O3: ZirTough) zirconia showed a strong aging resistance, whereas the surface-treated Y-TZP/Al2O3 zirconia degraded slightly. SIGNIFICANCE: Surface treatment improved the aging resistance of Y-TZP zirconia. Surface treatment did not affect the LTD behavior of Ce-TZP/Al2O3 zirconia, while surface treatment decreased the aging resistance of Y-TZP/Al2O3 zirconia.


Asunto(s)
Porcelana Dental/química , Circonio/química , Resinas Acrílicas/química , Óxido de Aluminio/química , Resinas Compuestas/química , Grabado Dental/métodos , Ensayo de Materiales , Poliuretanos/química , Dióxido de Silicio/química , Propiedades de Superficie , Difracción de Rayos X , Itrio/química
10.
Materials (Basel) ; 7(8): 5664-5687, 2014 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-28788153

RESUMEN

Recently, "meltless" recycling techniques have been presented for the light metals category, targeting both energy and material savings by bypassing the final recycling step of remelting. In this context, the use of spark plasma sintering (SPS) is proposed in this paper as a novel solid-state recycling technique. The objective is two-fold: (I) to prove the technical feasibility of this approach; and (II) to characterize the recycled samples. Aluminum (Al) alloy scrap was selected to demonstrate the SPS effectiveness in producing fully-dense samples. For this purpose, Al alloy scrap in the form of machining chips was cold pre-compacted and sintered bellow the solidus temperature at 490 °C, under elevated pressure of 200 MPa. The dynamic scrap compaction, combined with electric current-based joule heating, achieved partial fracture of the stable surface oxides, desorption of the entrapped gases and activated the metallic surfaces, resulting in efficient solid-state chip welding eliminating residual porosity. The microhardness, the texture, the mechanical properties, the microstructure and the density of the recycled specimens have been investigated. An X-ray computed tomography (CT) analysis confirmed the density measurements, revealing a void-less bulk material with homogeneously distributed intermetallic compounds and oxides. The oxide content of the chips incorporated within the recycled material slightly increases its elastic properties. Finally, a thermal distribution simulation of the process in different segments illustrates the improved energy efficiency of this approach.

11.
Dent Mater ; 30(6): 669-78, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24698437

RESUMEN

UNLABELLED: The effect of sintering conditions and concomitant microstructure of dental zirconia (ZrO2) ceramics on their low-temperature degradation (LTD) behavior remains unclear. OBJECTIVES: Therefore, their effect on LTD of dental ZrO2 ceramics was investigated. METHODS: Three commercial pre-sintered yttria-stabilized dental zirconia materials were sintered at three temperatures (1450°C, 1550°C and 1650°C) applying three dwell times (1, 2 and 4h). Grain size measurements and LTD tests were performed on polished sample surfaces. LTD tests were performed at 134°C in an autoclave. The amount of monoclinic ZrO2 on the exposed surface was measured by X-ray diffraction (XRD). RESULTS: Higher sintering temperatures and elongated dwell times increased the ZrO2 grain size. Simultaneously, a larger fraction of zirconia grains adopted a cubic crystal structure, resulting in a decreased yttria content in the remaining tetragonal grains. Both the larger grain sizes and the lower average stabilizer content made the tetragonal grains more susceptible to LTD. Overall, independent on the commercial dental zirconia grade tested, the specimens sintered at 1450°C for 1h combined good mechanical properties with the best resistance to LTD. SIGNIFICANCE: In general, increased sintering temperatures and times result in a higher sensitivity to low-temperature degradation of Y-TZP ceramics.


Asunto(s)
Materiales Dentales , Temperatura , Circonio , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA