Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Theor Appl Genet ; 132(5): 1571-1585, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30756127

RESUMEN

KEY MESSAGE: Linkage maps of muscadine grape generated using genotyping-by-sequencing (GBS) provide insight into genome collinearity between Muscadinia and Euvitis subgenera and genetic control of flower sex and berry color. The muscadine grape, Vitis rotundifolia, is a specialty crop native to the southeastern USA. Muscadine vines can be male, female, or perfect-flowered, and berry color ranges from bronze to black. Genetic linkage maps were constructed using genotyping-by-sequencing in two F1 populations segregating for flower sex and berry color. The linkage maps consisted of 1244 and 2069 markers assigned to 20 linkage groups (LG) for the 'Black Beauty' × 'Nesbitt' and 'Supreme' × 'Nesbitt' populations, respectively. Data from both populations were used to generate a consensus map with 2346 markers across 20 LGs. A high degree of collinearity was observed between the genetic maps and the Vitis vinifera physical map. The higher chromosome number in muscadine (2n = 40) compared to V. vinifera (2n = 38) was accounted for by the behavior of V. vinifera chromosome 7 as two independently segregating LGs in muscadine. The muscadine sex locus mapped to an interval that aligned to 4.64-5.09 Mb on V. vinifera chromosome 2, a region which includes the previously described V. vinifera subsp. sylvestris sex locus. While the MYB transcription factor genes controlling fruit color in V. vinifera are located on chromosome 2, the muscadine berry color locus mapped to an interval aligning to 11.09-11.88 Mb on V. vinifera chromosome 4, suggesting that a mutation in a different gene in the anthocyanin biosynthesis pathway determines berry color in muscadine. These linkage maps lay the groundwork for marker-assisted breeding in muscadine and provide insight into the evolution of Vitis species.


Asunto(s)
Desarrollo de la Planta/genética , Vitis/genética , Mapeo Cromosómico , Color , Flores/genética , Flores/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , Genoma de Planta , Genotipo , Vitis/crecimiento & desarrollo
2.
J Agric Food Chem ; 71(2): 1035-1045, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36602944

RESUMEN

Mesotrione is effective in controlling a wide spectrum of weeds in corn but not registered for postemergence use in sorghum because of crop injury. We screened a sorghum germplasm collection and identified two mesotrione-resistant sorghum genotypes (G-1 and G-10) and one susceptible genotype (S-1) in an in vitro plate assay. A mesotrione dose-response assay under greenhouse and field conditions confirmed that G-1 and G-10 are highly resistant compared to S-1. We found enhanced metabolism of mesotrione in G-1 and G-10 using HPLC assay, and a significant reduction in biomass accumulation was found in G-1 and G-10 plants pretreated with cytochrome P450 (CYP)-inhibitors malathion or piperonyl butoxide, indicating the involvement of CYPs in the metabolism of mesotrione. Genetic analyses using F1 and F2 progenies generated by crossing G-1 and G-10 separately with S-1 revealed that mesotrione resistance in sorghum is controlled by a single dominant gene along with several genes with minor effects.


Asunto(s)
Sorghum , Sorghum/genética , Poaceae , Control de Malezas , Malezas/genética , Inhibidores Enzimáticos del Citocromo P-450
3.
G3 (Bethesda) ; 12(5)2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35302606

RESUMEN

Muscadine grapes (Vitis rotundifolia Michx.) are a specialty crop cultivated in the southern United States. Muscadines (2n = 40) belong to the Muscadinia subgenus of Vitis, while other cultivated grape species belong to the subgenus Euvitis (2n = 38). The muscadine berry color locus was mapped to a 0.8 Mbp region syntenic with chromosome 4 of Vitis vinifera. In this study, we identified glutathione S-transferase4 as a likely candidate gene for anthocyanin transport within the berry color locus. PCR and Kompetitive allele-specific PCR genotyping identified a single intragenic SNP (C/T) marker corresponding to a proline to leucine mutation within the muscadine glutathione S-transferase4 (VrGST4) that differentiated black (CC and CT) from bronze (TT) muscadines in 126 breeding selections, 76 cultivars, and 359 progeny from 3 mapping populations. Anthocyanin profiling on a subset of the progeny indicated a dominant VrGST4 action. VrGST4 was expressed in skins of both black and bronze muscadines at similar levels. While nonsynonymous polymorphisms between black and bronze muscadines were discovered in VrGSTF12, another Type I GST-coding gene in the muscadine color locus, this gene was ruled out as a possible candidate for berry color because RNA sequencing indicated it is not expressed in berry skins at véraison from black or bronze genotypes. These results suggest that the bronze phenotype in muscadines is regulated by a mechanism distinct from the MybA gene cluster responsible for berry color variation in Vitis vinifera.


Asunto(s)
Vitis , Antocianinas/genética , Antioxidantes , Frutas/genética , Glutatión , Glutatión Transferasa/genética , Fitomejoramiento , Vitis/genética
4.
Front Plant Sci ; 11: 596581, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33362828

RESUMEN

Postemergence grass weed control continues to be a major challenge in grain sorghum [Sorghum bicolor (L.) Moench], primarily due to lack of herbicide options registered for use in this crop. The development of herbicide-resistant sorghum technology to facilitate broad-spectrum postemergence weed control can be an economical and viable solution. The 4-hydroxyphenylpyruvate dioxygenase-inhibitor herbicides (e.g., mesotrione or tembotrione) can control a broad spectrum of weeds including grasses, which, however, are not registered for postemergence application in sorghum due to crop injury. In this study, we identified two tembotrione-resistant sorghum genotypes (G-200, G-350) and one susceptible genotype (S-1) by screening 317 sorghum lines from a sorghum association panel (SAP). These tembotrione-resistant and tembotrione-susceptible genotypes were evaluated in a tembotrione dose-response [0, 5.75, 11.5, 23, 46, 92 (label recommended dose), 184, 368, and 736 g ai ha-1] assay. Compared with S-1, the genotypes G-200 and G-350 exhibited 10- and seven fold more resistance to tembotrione, respectively. To understand the inheritance of tembotrione-resistant trait, crosses were performed using S-1 and G-200 or G-350 to generate F1 and F2 progeny. The F1 and F2 progeny were assessed for their response to tembotrione treatment. Genetic analyses of the F1 and F2 progeny demonstrated that the tembotrione resistance in G-200 and G-350 is a partially dominant polygenic trait. Furthermore, cytochrome P450 (CYP)-inhibitor assay using malathion and piperonyl butoxide suggested possible CYP-mediated metabolism of tembotrione in G-200 and G-350. Genotype-by-sequencing based quantitative trait loci (QTL) mapping revealed QTLs associated with tembotrione resistance in G-200 and G-350 genotypes. Overall, the genotypes G-200 and G-350 confer a high level of metabolic resistance to tembotrione and controlled by a polygenic trait. There is an enormous potential to introgress the tembotrione resistance into breeding lines to develop agronomically desirable sorghum hybrids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA