Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Org Chem ; 88(12): 7630-7640, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-36542602

RESUMEN

Chiral cyclopropanols are highly desirable building blocks for medicinal chemistry, but the stereoselective synthesis of these molecules remains challenging. Here, a novel strategy is reported for the diastereo- and enantioselective synthesis of cyclopropanol derivatives via the biocatalytic asymmetric cyclopropanation of vinyl esters with ethyl diazoacetate (EDA). A dehaloperoxidase enzyme from Amphitrite ornata was repurposed to catalyze this challenging cyclopropanation reaction, and its activity and stereoselectivity were optimized via protein engineering. Using this system, a broad range of electron-deficient vinyl esters were efficiently converted to the desired cyclopropanation products with up to 99.5:0.5 diastereomeric and enantiomeric ratios. In addition, the engineered dehaloperoxidase-based biocatalyst is able to catalyze a variety of other abiological carbene transfer reactions, including N-H/S-H carbene insertion with EDA as well as cyclopropanation with diazoacetonitrile, thus adding to the multifunctionality of this enzyme and defining it as a valuable new scaffold for the development of novel carbene transferases.


Asunto(s)
Ésteres , Biocatálisis , Catálisis
2.
Biochemistry ; 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35612958

RESUMEN

Enhancing the thermostability of enzymes without impacting their catalytic function represents an important yet challenging goal in protein engineering and biocatalysis. We recently introduced a novel method for enzyme thermostabilization that relies on the computationally guided installation of genetically encoded thioether "staples" into a protein via cysteine alkylation with the noncanonical amino acid O-2-bromoethyl tyrosine (O2beY). Here, we demonstrate the functionality of an expanded set of electrophilic amino acids featuring chloroacetamido, acrylamido, and vinylsulfonamido side-chain groups for protein stapling using this strategy. Using a myoglobin-based cyclopropanase as a model enzyme, our studies show that covalent stapling with p-chloroacetamido-phenylalanine (pCaaF) provides higher stapling efficiency and enhanced stability (thermodynamic and kinetic) compared to the other stapled variants and the parent protein. Interestingly, molecular simulations of conformational flexibility of the cross-links show that the pCaaF staple allows fewer energetically feasible conformers than the other staples, and this property may be a broader indicator of stability enhancement. Using this strategy, pCaaF-stapled variants with significantly enhanced stability against thermal denaturation (ΔTm' = +27 °C) and temperature-induced heme loss (ΔT50 = +30 °C) were obtained while maintaining high levels of catalytic activity and stereoselectivity. Crystallographic analyses of singly and doubly stapled variants provide key insights into the structural basis for stabilization, which includes both direct interactions of the staples with protein residues and indirect interactions through adjacent residues involved in heme binding. This work expands the toolbox of protein stapling strategies available for protein stabilization.

3.
Biotechnol Appl Biochem ; 67(4): 516-526, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32542734

RESUMEN

Recent years have witnessed a rapid increase in the application of enzymes for chemical synthesis and manufacturing, including the industrial-scale synthesis of pharmaceuticals using multienzyme processes. From an operational standpoint, these bioprocesses often require robust biocatalysts capable of tolerating high concentrations of organic solvents and possessing long shelflife stability. In this work, we investigated the activity and stability of myoglobin (Mb)-based carbene transfer biocatalysts in the presence of organic solvents and after lyophilization. Our studies demonstrate that Mb-based cyclopropanases possess remarkable organic solvent stability, maintaining high levels of activity and stereoselectivity in the presence of up to 30%-50% (v/v) concentrations of various organic solvents, including ethanol, methanol, N,N-dimethylformamide, acetonitrile, and dimethyl sulfoxide. Furthermore, they tolerate long-term storage in lyophilized form, both as purified protein and as whole cells, without significant loss in activity and stereoselectivity. These stability properties are shared by Mb-based carbene transferases optimized for other type of asymmetric carbene transfer reactions. Finally, we report on simple protocols for catalyst recycling as whole-cell system and for obviating the need for strictly anaerobic conditions to perform these transformations. These findings demonstrate the robustness of Mb-based carbene transferases under operationally relevant conditions and should help guide the application of these biocatalysts for synthetic applications.


Asunto(s)
Biocatálisis , Metano/análogos & derivados , Mioglobina/química , Metano/química , Estabilidad Proteica , Solventes/química
4.
Angew Chem Int Ed Engl ; 58(30): 10148-10152, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31099936

RESUMEN

2,3-Dihydrobenzofurans are key pharmacophores in many natural and synthetic bioactive molecules. A biocatalytic strategy is reported here for the highly diastereo- and enantioselective construction of stereochemically rich 2,3-dihydrobenzofurans in high enantiopurity (>99.9% de and ee), high yields, and on a preparative scale via benzofuran cyclopropanation with engineered myoglobins. Computational and structure-reactivity studies provide insights into the mechanism of this reaction, enabling the elaboration of a stereochemical model that can rationalize the high stereoselectivity of the biocatalyst. This information was leveraged to implement a highly stereoselective route to a drug molecule and a tricyclic scaffold featuring five stereogenic centers via a single-enzyme transformation. This work expands the biocatalytic toolbox for asymmetric C-C bond transformations and should prove useful for further development of metalloprotein catalysts for abiotic carbene transfer reactions.


Asunto(s)
Benzofuranos/química , Biocatálisis , Modelos Moleculares , Estructura Molecular , Mioglobina/química , Mioglobina/metabolismo , Conformación Proteica , Termodinámica
5.
Angew Chem Int Ed Engl ; 57(31): 9911-9915, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-29905974

RESUMEN

Functionalized indoles are recurrent motifs in bioactive natural products and pharmaceuticals. While transition metal-catalyzed carbene transfer has provided an attractive route to afford C3-functionalized indoles, these protocols are viable only in the presence of N-protected indoles, owing to competition from the more facile N-H insertion reaction. Herein, a biocatalytic strategy for enabling the direct C-H functionalization of unprotected indoles is reported. Engineered variants of myoglobin provide efficient biocatalysts for this reaction, which has no precedents in the biological world, enabling the transformation of a broad range of indoles in the presence of ethyl α-diazoacetate to give the corresponding C3-functionalized derivatives in high conversion yields and excellent chemoselectivity. This strategy could be exploited to develop a concise chemoenzymatic route to afford the nonsteroidal anti-inflammatory drug indomethacin.


Asunto(s)
Indoles/metabolismo , Mioglobina/metabolismo , Biocatálisis , Catálisis , Indoles/química , Estructura Molecular , Mioglobina/química
6.
Inorg Chem ; 56(10): 5623-5635, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28443661

RESUMEN

The small, stable heme protein myoglobin (Mb) was modified through cofactor substitution and mutagenesis to develop a new catalyst for carbene transfer reactions. The native heme was removed from wild-type Mb and several Mb His64 mutants (H64D, H64A, H64V), and the resulting apoproteins were reconstituted with ruthenium mesoporphyrin IX (RuMpIX). The reconstituted proteins (RuMb) were characterized by UV-vis and circular dichroism spectroscopy and were used as catalysts for the N-H insertion of aniline derivatives and the cyclopropanation of styrene derivatives. The best catalysts for each reaction were able to achieve turnover numbers (TON) up to 520 for the N-H insertion of aniline, and 350 TON for the cyclopropanation of vinyl anisole. Our results show that RuMb is an effective catalyst for N-H insertion, with the potential to further increase the activity and stereoselectivity of the catalyst in future studies. Compared to native Mb ("FeMb"), RuMb is a more active catalyst for carbene transfer reactions, which leads to both heme and protein modification and degradation and, hence, to an overall much-reduced lifetime of the catalyst. This leads to lower TONs for RuMb compared to the iron-containing analogues. Strategies to overcome this limitation are discussed. Finally, comparison is also made to FeH64DMb and FeH64AMb, which have not been previously investigated for carbene transfer reactions.


Asunto(s)
Complejos de Coordinación/química , Metano/análogos & derivados , Mioglobina/química , Ingeniería de Proteínas , Catálisis , Metano/química , Estructura Molecular , Mioglobina/genética
7.
Foods ; 13(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38254481

RESUMEN

The poultry industry in the United States is one of the largest in the world. Poultry consumption has significantly increase since the COVID-19 pandemic and is predicted to increase over 16% between 2021 and 2030. Two of the most significant causes of hospitalizations and death in the United States are highly related to poultry consumption. The FSIS regulates poultry processing, enforcing microbial performance standards based on Salmonella and Campylobacter prevalence in poultry processing establishments. This prevalence approach by itself is not a good indicator of food safety. More studies have shown that it is important to evaluate quantification along with prevalence, but there is not much information about poultry mapping using quantification and prevalence. In this study, enumeration and prevalence of Salmonella and Campylobacter were evaluated throughout the process at three different plants in the United States. Important locations were selected in this study to evaluate the effect of differences interventions. Even though there were high differences between the prevalences in the processes, some of the counts were not significantly different, and they were effective in maintaining pathogens at safe levels. Some of the results showed that the intervention and/or process were not well controlled, and they were not effective in controlling pathogens. This study shows that every plant environment is different, and every plant should be encouraged to implement a bio-mapping study. Quantification of pathogens leads to appropriate risk assessment, where physical and chemical interventions can be aimed at specific processing points with higher pathogen concentrations using different concentrations of overall process improvement.

8.
Nat Catal ; 7(1): 65-76, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38584987

RESUMEN

Lactam rings are found in many biologically active natural products and pharmaceuticals, including important classes of antibiotics. Methods for the asymmetric synthesis of these molecules are therefore highly desirable, particularly through the selective functionalization of unreactive aliphatic C-H bonds. Here we show the development of a strategy for the asymmetric synthesis of ß-, γ-, and δ-lactams via hemoprotein-catalysed intramolecular C-H amidation reaction with readily available dioxazolone reagents. Engineered myoglobin variants serve as excellent biocatalysts for this transformation yielding the desired lactam products in high yields, high enantioselectivity, and on preparative scale. Mechanistic and computational studies elucidate the nature of the C-H amination and enantiodetermining steps and provide insights into protein-mediated control of regioselectivity and stereoselectivity. Additionally, an alkaloid natural product and a drug molecule were synthesized chemoenzymatically in much fewer steps (7-8 vs. 11-12) than previously reported, further demonstrating the power of biosynthetic strategy for the preparation of complex bioactive molecules.

9.
Nat Chem ; 16(5): 817-826, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38351380

RESUMEN

Catalysis with engineered enzymes has provided more efficient routes for the production of active pharmaceutical agents. However, the potential of biocatalysis to assist in early-stage drug discovery campaigns remains largely untapped. In this study, we have developed a biocatalytic strategy for the construction of sp3-rich polycyclic compounds via the intramolecular cyclopropanation of benzothiophenes and related heterocycles. Two carbene transferases with complementary regioisomer selectivity were evolved to catalyse the stereoselective cyclization of benzothiophene substrates bearing diazo ester groups at the C2 or C3 position of the heterocycle. The detailed mechanisms of these reactions were elucidated by a combination of crystallographic and computational analyses. Leveraging these insights, the substrate scope of one of the biocatalysts could be expanded to include previously unreactive substrates, highlighting the value of integrating evolutionary and rational strategies to develop enzymes for new-to-nature transformations. The molecular scaffolds accessed here feature a combination of three-dimensional and stereochemical complexity with 'rule-of-three' properties, which should make them highly valuable for fragment-based drug discovery campaigns.


Asunto(s)
Biocatálisis , Compuestos Policíclicos , Compuestos Policíclicos/química , Compuestos Policíclicos/metabolismo , Estereoisomerismo , Ciclización , Tiofenos/química , Tiofenos/metabolismo , Modelos Moleculares , Evolución Molecular Dirigida
10.
J Food Prot ; 87(10): 100357, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39241914

RESUMEN

Market hog lymph nodes (LNs) can contaminate carcasses with Salmonella, as well as ground and comminuted pork products. The objective of this study was to perform a qualitative and quantitative analysis of LNs from several regions and seasons in the United States to establish a Salmonella prevalence and concentration baseline. Six types of LNs (axillary, mesenteric, subiliac, tracheobronchial, superficial inguinal, prescapular), and tonsils were sampled from market hog carcasses from different regions (east, central, and west) and seasons (winter, spring, and summer/fall). Salmonella was detected and enumerated using BAX®-System-SalQuant® methods and the BAX®-System Real-Time Salmonella Assay. Salmonella prevalence (N = 4,132) was 36% for tonsils, 35% for mesenteric LN, and less than 10% for the other LN types. Of the 601 carcasses tested, 62% were positive for Salmonella, with the highest prevalence occurring during spring in the east (90.9%), and the lowest prevalence occurring during spring in the central region (26.0%). Tonsil prevalence was greatest in the eastern region during spring. Mesenteric LN prevalence was high (>20%) regardless of season or region. Salmonella prevalence in tracheobronchial, subiliac, axillary, and superficial inguinal LNs was generally greatest during the spring or fall and in the eastern region. The median SalQuant® Salmonella concentration was 2.18 log10Salmonella cells/sample. Median SalQuant® concentration for all other sample types fell below the limit of quantification (1 log10Salmonella cells/sample). This longitudinal study can be used by the pork industry for risk assessments and risk-based decision-making.


Asunto(s)
Ganglios Linfáticos , Salmonella , Estaciones del Año , Salmonella/aislamiento & purificación , Animales , Ganglios Linfáticos/microbiología , Estados Unidos , Porcinos , Prevalencia , Tonsila Palatina/microbiología , Humanos
11.
Foods ; 12(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37893695

RESUMEN

Bio-mapping studies conducted in pork harvest and fabrication facilities have indicated that Salmonella is prevalent and mitigations are needed to reduce the pathogen in trim and ground products. Salmonella can be isolated from the lymph nodes and can cause contamination in comminuted pork products. The objective of this study was to determine if physically removing topical and internal lymph nodes in pork products prior to grinding would result in the mitigation of Salmonella and a reduction in indicators in the final ground/comminuted products. In total, three treatment groups were assigned in a commercial pork processing facility as follows: (1) untreated control, (2) topical (surface) glands removed before grinding, and (3) topical, jowl, and internal lymph nodes and glands removed before grinding. Indicator microorganisms were determined using the BioMérieux TEMPO® system and the quantification of Salmonella was performed using the BAX® System Real-Time Salmonella SalQuant® methodology. The removal of lymph nodes located on the topical and internal surfaces and in the jowl significantly (p < 0.05) reduced the presence of Salmonella and also reduced the presence of indicator organisms according to this study. Briefly, 2.5-Log CFU/sample of Salmonella was initially observed in the trim samples, and the ground samples contained 3.8-Log CFU/sample of Salmonella. The total numbers were reduced to less than 1-Log CFU/sample in both trim and ground products. This study indicates a need for lymph node mitigation strategies beginning prior to harvest, in order to prevent contamination in further-processed pork products.

12.
Res Sq ; 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36711830

RESUMEN

Lactam rings are found in many biologically active natural products and pharmaceuticals, including important classes of antibiotics. Given their widespread presence in bioactive molecules, methods for the asymmetric synthesis of these molecules, in particular through the selective functionalization of ubiquitous yet unreactive aliphatic C-H bonds, are highly desirable. In this study, we report the development of a novel strategy for the asymmetric synthesis of 4-, 5-, and 6-membered lactams via an unprecedented hemoprotein-catalyzed intramolecular C-H amidation reaction with readily available dioxazolone reagents. Engineered myoglobin variants serve as excellent biocatalysts for this transformation producing an array of ß-, γ-, and δ-lactam molecules in high yields, with high enantioselectivity, and on preparative scale. Mechanistic and computational studies elucidate the nature of the C-H amination and enantiodetermining steps in these reactions and provide insights into protein-mediated control of regioselectivity and stereoselectivity. Using this system, it was possible to accomplish the chemoenzymatic total synthesis of an alkaloid natural product and a drug molecule in much fewer steps (7-8 vs. 11-12) than previously possible, which showcases the power of this biosynthetic strategy toward enabling the preparation of complex bioactive molecules.

13.
Foods ; 12(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37835253

RESUMEN

A bio-mapping study was conducted with the aim of creating a microbiological baseline on indicator organisms and pathogens in commercial broiler processing facilities located in a country in South America. Whole chicken carcass and wing rinses were collected from five stages of the poultry processing line: live receiving (LR), rehanger (R), post-evisceration (PE), post-chilling (PC), and wings (W). Rinses (n = 150) were enumerated using the MicroSnap™ system for total viable counts (TVC) and Enterobacteriaceae (EB), while the BAX®-System-SalQuant® and BAX®-System-CampyQuant™ were used for Salmonella and Campylobacter, respectively. TVC and EB were significantly different between stages at the processing line (p < 0.01). There was a significant reduction from LR to PC for both microbial indicators. TVC and EB counts increased significantly from PC to W. Salmonella counts at PC were significantly different from the other stages at the processing line (p = 0.03). Campylobacter counts were significantly higher than the other stages at PC (p < 0.01). The development of bio-mapping baselines with microbial indicators showed consistent reduction up to the post-chilling stage, followed by an increase at the wings sampling location. The quantification of pathogens demonstrates that prevalence analysis as a sole measurement of food safety is not sufficient to evaluate the performance of processing operations and sanitary dressing procedures in commercial processing facilities.

14.
Foods ; 12(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36832897

RESUMEN

The goal of this study was to develop a rapid RT-PCR enumeration method for Salmonella in pork and beef lymph nodes (LNs) utilizing BAX®-System-SalQuant® as well as to assess the performance of the methodology in comparison with existing ones. For study one: PCR curve development, pork, and beef LNs (n = 64) were trimmed, sterilized, pulverized, spiked with 0.00 to 5.00 Log CFU/LN using Salmonella Typhimurium, and then homogenized with BAX-MP media. Samples were incubated at 42 °C and tested at several time points using the BAX®-System-RT-PCR Assay for Salmonella. Cycle-Threshold values from the BAX®-System, for each Salmonella concentration were recorded and utilized for statistical analysis. For study two: Method comparison; additional pork and beef LNs (n = 52) were spiked and enumerated by (1) 3M™EB-Petrifilm™ + XLD-replica plate, (2) BAX®-System-SalQuant®, and (3) MPN. Linear-fit equations for LNs were estimated with recovery times of 6 h and a limit of quantification (LOQ) of 10 CFU/LN. Slopes and intercepts for LNs using BAX®-System-SalQuant® when compared with MPN were not significantly different (p < 0.05), while the same parameters for 3M™EB-Petrifilm™ + XLD-replica plate were significantly different (p > 0.05). The results support the capability of BAX®-System-SalQuant® to enumerate Salmonella in pork and beef LNs. This development adds support to the use of PCR-based quantification methodologies for pathogen loads in meat products.

15.
Foods ; 12(4)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36832958

RESUMEN

The objective of this study was to evaluate the food safety efficacy of common antimicrobial interventions at and above required uptake levels for processing aids on the reduction of Shiga-toxin producing E. coli (STEC) and Salmonella spp. through spray and dip applications. Beef trim was inoculated with specific isolates of STEC or Salmonella strains. Trim was intervened with peracetic or lactic acid through spray or dip application. Meat rinses were serially diluted and plated following the drop dilution method; an enumerable range of 2-30 colonies was used to report results before log transformation. The combination of all treatments exhibits an average reduction rate of 0.16 LogCFU/g for STEC and Salmonella spp., suggesting that for every 1% increase in uptake there is an increase of 0.16 LogCFU/g of reduction rate. There is a statistical significance in the reduction rate of Shiga-toxin producing Escherichia coli in relation to the uptake percentage (p < 0.01). The addition of explanatory variables increases the R2 of the regression for STEC, where all the additional explanatory variables are statistically significant for reduction (p < 0.01). The addition of explanatory variables increases the R2 of the regression for Salmonella spp., but only trim type is statistically significant for reduction rate (p < 0.01). An increase in uptake percentages showed a significant increase in reduction rate of pathogens on beef trimmings.

16.
Foods ; 12(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36832973

RESUMEN

Bio-mapping studies play an important role, as the data collected can be managed and analyzed in multiple ways to look at process trends, find explanations about the effect of process changes, activate a root cause analysis for events, and even compile performance data to demonstrate to inspection authorities or auditors the effect of certain decisions made on a daily basis and their effects over time in commercial settings not only from the food safety perspective but also from the production side. This study presents an alternative analysis of bio-mapping data collected throughout several months in a commercial poultry processing operation as described in the article "Bio-Mapping Indicators and Pathogen Loads in a Commercial Broiler Processing Facility Operating with High and Low Antimicrobial Interventions". The conducted analysis identifies the processing shift effect on microbial loads, attempts to find correlation between microbial indicators data and pathogens loads, and identifies novel visualization approaches and conducts distribution analysis for microbial indicators and pathogens in a commercial poultry processing facility. From the data analyzed, a greater number of locations were statistically different between shifts under reduced levels of chemical interventions with higher means at the second shift for both indicators and pathogens levels. Minimal to negligible correlation was found when comparing aerobic counts and Enterobacteriaceae counts with Salmonella levels, with significant variability between sampling locations. Distribution analysis and visualization as a bio-map of the process resulted in a clear bimodality in reduced chemical conditions for multiple locations mostly explained by shift effect. The development and use of bio-mapping data, including proper data visualization, improves the tools needed for ongoing decision making in food safety systems.

17.
ACS Chem Biol ; 18(9): 2003-2013, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37642399

RESUMEN

Ubiquitin thioesterase OTUB2, a cysteine protease from the ovarian tumor (OTU) deubiquitinase superfamily, is often overexpressed during tumor progression and metastasis. Development of OTUB2 inhibitors is therefore believed to be therapeutically important, yet potent and selective small-molecule inhibitors targeting OTUB2 are scarce. Here, we describe the development of an improved OTUB2 inhibitor, LN5P45, comprising a chloroacethydrazide moiety that covalently reacts to the active-site cysteine residue. LN5P45 shows outstanding target engagement and proteome-wide selectivity in living cells. Importantly, LN5P45 as well as other OTUB2 inhibitors strongly induce monoubiquitination of OTUB2 on lysine 31. We present a route to future OTUB2-related therapeutics and have shown that the OTUB2 inhibitor developed in this study can help to uncover new aspects of the related biology and open new questions regarding the understanding of OTUB2 regulation at the post-translational modification level.


Asunto(s)
Proteasas de Cisteína , Procesamiento Proteico-Postraduccional , Ubiquitinación , Ubiquitina , Cisteína
18.
Foods ; 11(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36360077

RESUMEN

The objective of the study was to determine the impact of antimicrobial interventions and refrigerated dark storage on the shelf-life of pork chops. Boneless pork loins (n = 36) were split and stored for 1, 14, 28, and 42 days at 2-4 °C after being treated with the following antimicrobials: water (WAT), Bovibrom 225 ppm (BB225), Bovibrom 500 ppm (BB500), Fit Fresh 3 ppm (FF3), or washing solution 750 ppm (WS750). After the end of dark storage, pork loins were further processed and sliced into chops, overwrapped in trays, and displayed for up to an additional 96 h in a retail case. Instrumental and visual color measurements as well as mesophilic and psychrotrophic aerobic bacteria, and lactic acid bacteria were measured. BB500 and FF3 performed better in inhibiting the growth of indicator bacteria under 6 logs; however, FF3 presented the best stability for color during storage. Principal component analysis clustered initial dark storage days with a* and chroma while % discoloration, hue, b* and microorganisms where clustered with longer dark storage times. In general, treatment FF3 presented the best performance, both in inhibiting microbial growth and maintaining the stability of color, thus increasing the shelf-life of pork loins.

19.
Foods ; 11(17)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36076766

RESUMEN

The purpose of this study was to develop a quantitative baseline of indicator organisms and Salmonella by bio-mapping throughout the processing chain from harvest to final product stages within a commercial conventional design pork processing establishment. Swab samples were taken on the harvest floor at different processing steps, gambrel table, after polisher, before final rinse, after the final rinse, post snap chill, and after peroxyacetic acid (PAA) application, while 2-pound product samples were collected for trim and ground samples. The samples were subjected to analysis for indicator microorganism enumeration, Aerobic Count (AC), Enterobacteriaceae (EB), and generic Escherichia coli (EC), with the BioMérieux TEMPO®. Salmonella prevalence and enumeration was evaluated using the BAX® System Real-Time Salmonella and the SalQuant™ methodology. Microbial counts were converted to Log Colony-forming units (CFU) on a per mL, per g or per sample basis, presented as LogCFU/mL, LogCFU/g and LogCFU/sample, prior to statistical analysis. All indicator microorganisms were significantly reduced at the harvest floor (p-value < 0.001), from gambrel table to after PAA cabinet location. The reduction at harvest was 2.27, 2.46 and 2.24 LogCFU/mL for AC, EB and EC, respectively. Trim sample values fluctuated based on cut, with the highest average AC count found at neck trim (2.83 LogCFU/g). Further process samples showed the highest AC count in sausage with a mean of 5.28 LogCFU/g. EB counts in sausage (3.19 LogCFU/g) showed an evident increase, compared to the reduction observed at the end of harvest and throughout trim processing. EC counts showed a similar trend to EB counts with the highest value found in sausage links (1.60 LogCFU/g). Statistical microbial process control (SPC) parameters were also developed for each of the indicator microorganisms, using the overall mean count (X=), the Lower control limit (LCL) and Upper control limit (UCL) at each sampling location. For Salmonella prevalence, a total of 125/650 samples were found positive (19%). From those positive samples, 47 samples (38%) were suitable for enumeration using the BAX® System SalQuant™, the majority detected at the gambrel table location. From those enumerable samples, 60% were estimated to be between 0.97 and 1.97 LogCFU/sample, while the rest (40%) were higher within the 2.00−4.02 LogCFU/sample range. This study provides evidence for the application of indicator and pathogen quantification methodologies for food safety management in commercial pork processing operations.

20.
Foods ; 11(8)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35454719

RESUMEN

The objective was to conduct a bio-mapping of microbial indicators to determine statistical process control (SPC) parameters at a beef processing plant to establish microbiological baselines and process control parameters to support food safety management decisions. EZ-ReachTM swabs were used to collect 100 cm2 area samples at seven different locations throughout the beef processing line at four different regions on the carcass. Each of the eight sampling days evaluated included three samples collected per sampling location/carcass region for a total of 84 samples per day. Enumeration of total aerobic bacteria, Enterobacteriaceae, and Escherichia coli was performed on each sample. Microbial SPC parameters were estimated for each sampling point. Statistical differences between sampling points for all carcass locations (p < 0.001) followed an overall trend with higher values at pre- and post-evisceration with a continuous decrease until final interventions with a slight increase in counts during the chilling process and a final increase after fabrication. Variability at sampling points is the result of the nature of the process and highlights open opportunities for improvement of the food safety system. Microbial baselines and SPC parameters will help support decision making for continuous process improvement, validation of intervention schemes, and corrective action implementation for food safety management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA