RESUMEN
BACKGROUND: Identifying common factors that affect public adherence to COVID-19 containment measures can directly inform the development of official public health communication strategies. The present international longitudinal study aimed to examine whether prosociality, together with other theoretically derived motivating factors (self-efficacy, perceived susceptibility and severity of COVID-19, perceived social support) predict the change in adherence to COVID-19 containment strategies. METHOD: In wave 1 of data collection, adults from eight geographical regions completed online surveys beginning in April 2020, and wave 2 began in June and ended in September 2020. Hypothesized predictors included prosociality, self-efficacy in following COVID-19 containment measures, perceived susceptibility to COVID-19, perceived severity of COVID-19 and perceived social support. Baseline covariates included age, sex, history of COVID-19 infection and geographical regions. Participants who reported adhering to specific containment measures, including physical distancing, avoidance of non-essential travel and hand hygiene, were classified as adherence. The dependent variable was the category of adherence, which was constructed based on changes in adherence across the survey period and included four categories: non-adherence, less adherence, greater adherence and sustained adherence (which was designated as the reference category). RESULTS: In total, 2189 adult participants (82% female, 57.2% aged 31-59 years) from East Asia (217 [9.7%]), West Asia (246 [11.2%]), North and South America (131 [6.0%]), Northern Europe (600 [27.4%]), Western Europe (322 [14.7%]), Southern Europe (433 [19.8%]), Eastern Europe (148 [6.8%]) and other regions (96 [4.4%]) were analyzed. Adjusted multinomial logistic regression analyses showed that prosociality, self-efficacy, perceived susceptibility and severity of COVID-19 were significant factors affecting adherence. Participants with greater self-efficacy at wave 1 were less likely to become non-adherence at wave 2 by 26% (adjusted odds ratio [aOR], 0.74; 95% CI, 0.71 to 0.77; P < .001), while those with greater prosociality at wave 1 were less likely to become less adherence at wave 2 by 23% (aOR, 0.77; 95% CI, 0.75 to 0.79; P = .04). CONCLUSIONS: This study provides evidence that in addition to emphasizing the potential severity of COVID-19 and the potential susceptibility to contact with the virus, fostering self-efficacy in following containment strategies and prosociality appears to be a viable public health education or communication strategy to combat COVID-19.
Asunto(s)
COVID-19 , Adulto , Humanos , Femenino , Masculino , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Pandemias/prevención & control , Estudios Longitudinales , Europa (Continente) , Encuestas y CuestionariosRESUMEN
Among malignant neoplasms, pancreatic ductal adenocarcinoma (PDAC) has one of the highest fatality rates due to its late detection. Therefore, it is essential to discover a noninvasive, early, specific, and sensitive diagnostic method. MicroRNAs (miRNAs) are attractive biomarkers because they are accessible, highly specific, and sensitive. It is crucial to find miRNAs that could be used as possible biomarkers because PDAC is the eighth most common cause of cancer death in Mexico. With the help of microRNA microarrays, differentially expressed miRNAs (DEmiRNAs) were found in PDAC tissues. The presence of these DEmiRNAs in the plasma of Mexican patients with PDAC was determined using RT-qPCR. Receiver operating characteristic curve analysis was performed to determine the diagnostic capacity of these DEmiRNAs. Gene Expression Omnibus datasets (GEO) were employed to verify our results. The Prisma V8 statistical analysis program was used. Four DEmiRNAs in plasma from PDAC patients and microarray tissues were found. Serum samples from patients with PDAC were used to validate their overexpression in GEO databases. We discovered a new panel of the two miRNAs miR-222-3p and miR-221-3p that could be used to diagnose PDAC, and when miR-221-3p and miR-222-3p were overexpressed, survival rates decreased. Therefore, miR-222-3p and miR-221-3p might be employed as noninvasive indicators for the diagnosis and survival of PDAC in Mexican patients.
Asunto(s)
Carcinoma Ductal Pancreático , MicroARN Circulante , MicroARNs , Neoplasias Pancreáticas , Humanos , MicroARN Circulante/genética , México , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , MicroARNs/metabolismo , Biomarcadores , Biomarcadores de Tumor/genética , Neoplasias PancreáticasRESUMEN
OBJECTIVE: To examine the psychometric properties of the Spanish version of the Valuing Questionnaire (VQ) in Colombian clinical and nonclinical samples. METHOD: The VQ was administered to a total sample of 1820 participants, which included undergraduates (N = 762), general population (N = 724), and a clinical sample (N = 334). The questionnaire packages included measures of experiential avoidance, cognitive fusion, mindfulness, life satisfaction, and psychological difficulties. RESULTS: Across the different samples, internal consistency was good (global Cronbach's alpha of 0.83 for Progress and 0.82 for obstruction). Measurement invariance was found across samples and gender, and the two-factor model obtained a good fit to the data. The latent means of progress and obstruction of the clinical sample were lower and higher, respectively, than the latent means of the nonclinical samples. Correlations with other variables were in the expected direction. CONCLUSION: The Spanish version of the VQ showed good psychometric properties.
Asunto(s)
Atención Plena , Colombia , Humanos , Psicometría , Reproducibilidad de los Resultados , Encuestas y CuestionariosRESUMEN
In 40-50% of colorectal cancer (CRC) cases, K-Ras gene mutations occur, which induce the expression of the K-Ras4B oncogenic isoform. K-Ras4B is transported by phosphodiesterase-6δ (PDE6δ) to the plasma membrane, where the K-Ras4B-PDE6δ complex dissociates and K-Ras4B, coupled to the plasma membrane, activates signaling pathways that favor cancer aggressiveness. Thus, the inhibition of the K-Ras4B-PDE6δ dissociation using specific small molecules could be a new strategy for the treatment of patients with CRC. This research aimed to perform a preclinical proof-of-concept and a therapeutic potential evaluation of the synthetic I-C19 and 131I-C19 compounds as inhibitors of the K-Ras4B-PDE6δ dissociation. Molecular docking and molecular dynamics simulations were performed to estimate the binding affinity and the anchorage sites of I-C19 in K-Ras4B-PDE6δ. K-Ras4B signaling pathways were assessed in HCT116, LoVo and SW620 colorectal cancer cells after I-C19 treatment. Two murine colorectal cancer models were used to evaluate the I-C19 therapeutic effect. The in vivo biokinetic profiles of I-C19 and 131I-C19 and the tumor radiation dose were also estimated. The K-Ras4B-PDE6δ stabilizer, 131I-C19, was highly selective and demonstrated a cytotoxic effect ten times greater than unlabeled I-C19. I-C19 prevented K-Ras4B activation and decreased its dependent signaling pathways. The in vivo administration of I-C19 (30 mg/kg) greatly reduced tumor growth in colorectal cancer. The biokinetic profile showed renal and hepatobiliary elimination, and the highest radiation absorbed dose was delivered to the tumor (52 Gy/74 MBq). The data support the idea that 131I-C19 is a novel K-Ras4B/PDE6δ stabilizer with two functionalities: as a K-Ras4B signaling inhibitor and as a compound with radiotherapeutic activity against colorectal tumors.
Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Yoduros , Radioisótopos de Yodo , Ratones , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas p21(ras)/genéticaRESUMEN
Renal involvement in COVID-19 infection is varied and worsens its outcome and prognosis. However, the association of COVID-19 infection with glomerulonephritis is exceptional. We report a 46-year-old woman with COVID-19 who had an acute kidney injury and ANCA associated glomerulonephritis two weeks after the onset of the disease. The kidney biopsy showed a crescentic glomerulo-nephritis and the presence of anti-glomerular basement membrane antibodies (GBM-Abs). She was treated with steroids and oral cyclophosphamide with good response without requiring plasmapheresis. Plasma anti GBM-Abs were negative. This case suggests that the presence of anti-GBM-Abs in the kidney, was temporally related to COVID-19 pulmonary damage. The absence of plasma antibodies is probably due to transient production and glomerular adsorption, but with unknown pathogenic role.
Asunto(s)
COVID-19 , Glomerulonefritis , Femenino , Humanos , Persona de Mediana Edad , Anticuerpos Anticitoplasma de Neutrófilos , COVID-19/complicaciones , Glomerulonefritis/complicaciones , Autoanticuerpos , Membrana Basal/patologíaRESUMEN
Post-translational modifications of histone H3 N-terminal tails are key epigenetic regulators of virulence gene expression and sexual commitment in the human malaria parasite Plasmodium falciparum Here, we identify proteolytic clipping of the N-terminal tail of nucleosome-associated histone H3 at amino acid position 21 as a new chromatin modification. A cathepsin C-like proteolytic clipping activity is observed in nuclear parasite extracts. Notably, an ectopically expressed version of clipped histone H3, PfH3p-HA, is targeted to the nucleus and integrates into mononucleosomes. Furthermore, chromatin immunoprecipitation and next-generation sequencing analysis identified PfH3p-HA as being highly enriched in the upstream region of six genes that play a key role in DNA replication and repair: In these genes, PfH3p-HA demarcates a specific 1.5 kb chromatin island adjacent to the open reading frame. Our results indicate that, in P. falciparum, the process of histone clipping may precede chromatin integration hinting at preferential targeting of pre-assembled PfH3p-containing nucleosomes to specific genomic regions. The discovery of a protease-directed mode of chromatin organization in P. falciparum opens up new avenues to develop new anti-malarials.
Asunto(s)
Replicación del ADN , Histonas/metabolismo , Malaria Falciparum/parasitología , Nucleosomas/metabolismo , Plasmodium falciparum/fisiología , Regiones no Traducidas 5' , Secuencia de Aminoácidos , Inmunoprecipitación de Cromatina , Expresión Génica Ectópica , Eritrocitos/parasitología , Regulación de la Expresión Génica , Histonas/química , Histonas/genética , Humanos , Inhibidores de Proteasas/farmacología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteolisis/efectos de los fármacosRESUMEN
Actin is one of the most conserved, abundant, and ubiquitous proteins in all eukaryotes characterised to date. Posttranslation modifications of actin modify the organisation of the actin-rich cytoskeleton. In particular, chemical modifications of actin's amino-terminal region determine how filamentous actin is organised into scaffolds. After assuming that protein modifications account for the multiple functional activities exerted by the single actin in Entamoeba histolytica, we profiled posttranslational modifications of this protein. Acetylation (on 21 different amino acids) was the most abundant modification, followed by phosphorylation. Furthermore, the glycine residue at Position 2 in E. histolytica's actin (Gly2, not found in most other eukaryotic actins) was found to be acetylated. The impact of Gly2 on the amoeba's life cycle and pathogenicity was then assessed in mutagenesis experiments. We found that Gly2 was necessary for cell morphology and division, parasite-host cell adhesion, and host invasion in an in vitro model of amoebic human infection.
Asunto(s)
Citoesqueleto de Actina/metabolismo , Entamoeba histolytica/metabolismo , Proteínas Protozoarias/metabolismo , Acetilación , Adhesión Celular/fisiología , Humanos , Fosforilación , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/química , Proteínas Protozoarias/genéticaRESUMEN
The synthesis of new arene and heteroarene scaffolds of therapeutic interest has generated a renewed interest in the domino radical cyclisation-Smiles. In this work we present a detailed mechanistic investigation of the radical version of a cascade involving a desulfonative Smiles rearrangement on an aromatic ring bearing a sulfonamide linker. Competing routes have been explored to characterize the molecular mechanism of the studied reaction. The knowledge gained from previous experimental observations is explained through the energy profile obtained by means of quantum mechanical calculations. This study answers questions about the rate determining step and the type of mechanism involved (two-step or concerted). Supplementary rate constant calculations as well as quantum molecular dynamics support experimental observations. An IGM-δg analysis performed along the reaction path unveils and quantifies an intramolecular π-π stacking interaction accelerating the reaction. This novel post processing IGM-δg tool based on the electron density, turns out to be useful to monitor and quantify specific intramolecular weak interactions along a reaction path from wave functions. From this mechanistic investigation it turns out that Smiles rearrangement here takes place in two steps rather than in a direct intramolecular radical substitution. Furthermore, we show that chain length effects must be taken into account in the functionalization of new sulfonylated derivatives subjected to this radical cascade, given their influence in the reaction rate.
RESUMEN
The design of novel stimuli-responsive supramolecular systems based on host-guest chemistry implies a thorough understanding of the noncovalent interactions involved. In this regard, some computational tools enabling the extraction of the noncovalent signatures from local descriptors based on the electron density have been previously proposed. Although very useful to detect the existence of such interactions, these analyses provide only a semi-quantitative description, which represents a limitation. In this work, we present a novel computational tool based on the local atomic descriptor IGM-δginter/At, which is able to decompose the fragment interaction into atomic contributions. Then, the role played by each atom in the formation of the host-guest assembly is quantified by an integrated Δginter/At score. Herein, we apply the IGM-Δginter/At approach to some challenging systems, including multimetallic arrays, buckycatchers, and organic assemblies. These systems exhibit unique structural features that make it difficult to determine the host/guest atoms that contribute the most to the guest encapsulation. Here, the Δginter/At score proves to be an appealing tool to shed light on the guest accommodation on a per-atom basis and could be useful in the rational design of more selective target agents. We strongly believe that this novel approach will be useful for experimental teams devoted to the synthesis of supramolecular systems based on host-guest chemistry.
Asunto(s)
Simulación por Computador , Modelos Químicos , Cobre/química , Compuestos Macrocíclicos/químicaRESUMEN
Surrounding effects are crucial to successfully simulate the absorption and emission spectra of molecular systems. In this work we test different solvation models to compute transition energies and to simulate the spectra of oxyluciferin responsible for the light emission in fireflies and its derivatives. We demonstrate that, within the PCM model, the IBSF formalism is suitable for computing the transition energies of the oxyluciferin chemical forms characterized by a charge transfer character. On the other hand, the LR approach could be used for the chemical forms where an almost negligible charge transfer takes place. Moreover, we demonstrate that explicit solvation models, applied by QM/MM calculations, are needed to accurately reproduce the experimental shape of the spectra. Finally, the vibrationally resolved spectra using a solvation model (implicit or microsolvation) is computed. Some noticeable differences arise when considering the implicit solvation with respect to gas phase vibrational spectra, while small changes were found when explicit water molecules within a microsolvated model are considered.
Asunto(s)
Luciérnagas/química , Indoles/química , Pirazinas/química , Solventes/química , Animales , Interacciones Hidrofóbicas e Hidrofílicas , Luz , Mediciones Luminiscentes , Modelos Moleculares , Estructura Molecular , Espectrofotometría , Relación Estructura-Actividad , AguaRESUMEN
BACKGROUND: Colorectal cancer is the third most common cancer worldwide; and in 40% of all cases, KRAS4b-activating mutations occur. KRAS4b is transported by phosphodiesterase-6δ (PDEδ) to the plasma membrane, where it gets activated. PDEδ downregulation prevents redistribution and activation of KRAS4b. Thus, targeting the KRAS4b-PDEδ complex is a treatment strategy for colorectal cancer. METHODS: Using docking and molecular dynamics simulations coupled to molecular mechanics, the generalized born model and solvent accessibility (MMGBSA) approach to explore protein-ligand stability, we found that the compound ((2S)-N-(2,5-diclorofenil)-2-[(3,4-dimetoxifenil)metilamino]-propanamida), termed C19, bound and stabilized the KRAS4b-PDEδ complex. We investigated whether C19 decreases the viability and proliferation of colorectal cancer cells, in addition to knowing the type of cell death that it causes and if C19 decreases the activation of KRAS4b and their effectors. RESULTS: C19 showed high cytotoxicity in the colorectal cancer cell lines HCT116 and LoVo, with a stronger effect in KRAS-dependent LoVo cells. Importantly, C19 significantly decreased tumor size in a xenograft mouse model and showed lower side effects than 5-fluorouracil that is currently used as colorectal cancer treatment. CONCLUSIONS: Mechanistically, the cytotoxic effect was due to increased apoptosis of tumor cells and decreased phosphorylation of Erk and Akt. Therefore, our results suggest that C19 may serve as a promising new treatment for colorectal cancer.
Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/química , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Ratones , Modelos Moleculares , Conformación Molecular , Fosforilación , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/química , Transducción de Señal , Relación Estructura-Actividad , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUND: The GTPase KRas4B has been utilized as a principal target in the development of anticancer drugs. PDE6δ transports KRas4B to the plasma membrane, where it is released to activate various signaling pathways required for the initiation and maintenance of cancer. Therefore, identifying new small molecules that prevent activation of this GTPase by stabilizing the KRas4B-PDE6δ molecular complex is a practical strategy to fight against cancer. METHODS: The crystal structure of the KRas4B-PDE6δ heterodimer was employed to locate possible specific binding sites at the protein-protein interface region. Virtual screening of Enamine-database compounds was performed on the located potential binding sites to identify ligands able to simultaneously bind to the KRas4B-PDE6δ heterodimer. A molecular dynamics approach was used to estimate the binding free-energy of the complex. Cell viability and apoptosis were measured by flow cytometry. G-LISA was used to measure Ras inactivation. Western blot was used to measure AKT and ERK activation. MIA PaCa-2 cells implanted subcutaneously into nude mice were treated with D14 or C22 and tumor volumes were recorded. RESULTS: According to the binding affinity estimation, D14 and C22 stabilized the protein-protein interaction in the KRas4B-PDE6δ complex based on in vitro evaluation of the 38 compounds showing antineoplastic activity against pancreatic MIA PaCa-2 cancer cells. In this work, we further investigated the antineoplastic cellular properties of two of them, termed D14 and C22, which reduced the viability in the human pancreatic cancer cells lines MIA PaCa-2, PanC-1 and BxPC-3, but not in the normal pancreatic cell line hTERT-HPNE. Compounds D14 and C22 induced cellular death via apoptosis. D14 and C22 significantly decreased Ras-GTP activity by 33% in MIA PaCa-2 cells. Moreover, D14 decreased AKT phosphorylation by 70% and ERK phosphorylation by 51%, while compound C22 reduced AKT phosphorylation by 60% and ERK phosphorylation by 36%. In addition, compounds C22 and D14 significantly reduced tumor growth by 88.6 and 65.9%, respectively, in a mouse xenograft model. CONCLUSIONS: We identified two promising compounds, D14 and C22, that might be useful as therapeutic drugs for pancreatic ductal adenocarcinoma treatment.
Asunto(s)
Antineoplásicos/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/química , Descubrimiento de Drogas/métodos , Humanos , Masculino , Ratones , Ratones Desnudos , Simulación de Dinámica Molecular , Neoplasias Pancreáticas/patología , Multimerización de Proteína/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/química , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The telomeres of the malaria parasite Plasmodium falciparum are essential not only for chromosome end maintenance during blood stage development in humans but also to generate genetic diversity by facilitating homologous recombination of subtelomeric, multigene virulence families such as var and rifin. However, other than the telomerase PfTERT, proteins that act at P. falciparum telomeres are poorly characterised. To isolate components that bind to telomeres, we performed oligonucleotide pulldowns and electromobility shift assays with a telomeric DNA probe and identified a non-canonical member of the ApiAP2 family of transcription factors, PfAP2Tel (encoded by PF3D7_0622900), as a component of the P. falciparum telomere-binding protein complex. PfAP2Tel is expressed throughout the intra-erythrocytic life cycle and localises to the nuclear periphery, co-localising with telomeric clusters. Furthermore, EMSAs using the recombinant protein demonstrated direct binding of PfAP2Tel to telomeric repeats in vitro, while genome-wide chromatin immunoprecipitation followed by next generation sequencing corroborated the high specificity of this protein to telomeric ends of all 14 chromosomes in vivo. Taken together, our data describe a novel function for ApiAP2 proteins at chromosome ends and open new avenues to study the molecular machinery that regulates telomere function in P. falciparum.
Asunto(s)
Variación Antigénica/genética , Proteínas de Unión al ADN/genética , Plasmodium falciparum/genética , Dominios Proteicos/genética , Proteínas de Unión a Telómeros/genética , Telómero/metabolismo , Variación Antigénica/inmunología , Inmunoprecipitación de Cromatina , Sondas de ADN/genética , Proteínas de Unión al ADN/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Secuenciación de Nucleótidos de Alto Rendimiento , Malaria/inmunología , Malaria/parasitología , Plasmodium falciparum/inmunología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Factores de Transcripción/genéticaRESUMEN
The formation of host-guest species is a relevant issue in the obtaining of supramolecular arrays. In this work, the encapsulation of dihalogen molecules into different cucurbituril hosts allows further evaluation of the role of size and interaction energy for the stabilization of host-guest species. Our results for the X2@CB[n] (X = Cl, Br, I, n = 6, 7, 8) series, allow exploration of the hosts providing increasing cavity sizes, resulting in different host-guest scenarios. It is found that the interaction is mostly given by London type interactions (59% to 65%), followed by the electrostatic character of the interaction (31-27%). For species with a packing coefficient (PC) within the suggested favorable range (PC = 55-68%), and lower, the strength of the stabilizing electrostatic interaction and covalent character, and the repulsive Pauli term, remain similar. Moreover, the dispersion term varies to a large extent, owing to its relation to the available interacting internal face of CB[n], which is less in n = 7 and 8 counterparts. Hence, greater host flexibility is able to maximize the host-guest interactions, where this feature can be viewed as an interesting characteristic towards molecular recognition capabilities, which can be further studied in other related species such as cyclodextrins, pillararenes and other supramolecular hosts.
RESUMEN
Using a computational approach combining the Time-Dependent Density Functional Theory (TD-DFT) and the second-order Coupled Cluster (CC2) approaches, we investigate the spectral properties of a large panel of nor-dihydroxanthene (DHX)-hemicyanine fused dyes. First we compare the theoretical and experimental 0-0 energies for a set of 14 known synthetic compounds and show that a remarkable agreement between theory and experiment is obtained when a suitable environmental model is selected. In addition, we obtain vibrationally-resolved spectra for several compounds and theory also accurately reproduces the experimental band shapes. We show that the electronic transitions in nor-DHX-based fluorophores are associated with small variations of the dipole moments but large oscillator strengths. Using various chemical strategies, we design a series of compounds with red-shifted 0-0 energies.
RESUMEN
Small GTPases are signalling molecules that regulate important cellular processes. GTPases are deactivated by GTPase-activating proteins (GAPs). While human GAPs have been intensively studied, no GAP has yet been characterized in Entamoeba histolytica. In this study, we identified and characterized a novel nucleocytoplasmic RhoGAP in E. histolytica termed EhRhoGAPnc. In silico analyses of the domain structure revealed a previously undescribed peptide region within the carboxy-terminal region of EhRhoGAPnc capable of interacting with phosphatidic acid and phosphatidylinositol 3,5-bisphosphate. The full structural GAP domain showed increase GAP activity compared with the minimum region able to display GAP activity, as analysed both by experimental assays and molecular dynamics simulations. Furthermore, we identified amino acid residues that promote interactions between EhRhoGAPnc and its target GTPases EhRacC and EhRacD. Immunofluorescence studies revealed that EhRhoGAPnc colocalized with EhRacC and EhRacD during uroid formation but not during erythrophagocytosis. Interestingly, during erythrophagocytosis of red blood cells, EhRhoGAPnc colocalized with phosphatidic acid and phosphatidylinositol 3,5-bisphosphate. Overexpression of EhRhoGAPnc in E. histolytica led to inhibition of actin adhesion plate formation, migration, adhesion of E. histolytica to MDCK cells and consequently to an impairment of the cytopathic activity.
Asunto(s)
Entamoeba histolytica/patogenicidad , Proteínas Activadoras de GTPasa/fisiología , Proteínas Protozoarias/fisiología , Proteínas de Unión al GTP rac/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Núcleo Celular/metabolismo , Secuencia Conservada , Citoplasma/metabolismo , Entamoeba histolytica/enzimología , Eritrocitos/parasitología , Proteínas Activadoras de GTPasa/química , Humanos , Simulación de Dinámica Molecular , Fagocitosis , Transporte de Proteínas , Proteínas Protozoarias/químicaRESUMEN
The synthesis of boron difluoride complexes of a series of curcuminoid derivatives containing various donor end groups is described. Time-dependent (TD)-DFT calculations confirm the charge-transfer character of the second lowest-energy transition band and ascribe the lowest energy band to a "cyanine-like" transition. Photophysical studies reveal that tuning the donor strength of the end groups allows covering a broad spectral range, from the visible to the NIR region, of the UV-visible absorption and fluorescence spectra. Two-photon-excited fluorescence and Z-scan techniques prove that an increase in the donor strength or in the rigidity of the backbone results in a considerable increase in the two-photon cross section, reaching 5000 GM, with predominant two-photon absorption from the S0-S2 charge-transfer transition. Direct comparisons with the hemicurcuminoid derivatives show that the two-photon active band for the curcuminoid derivatives has the same intramolecular charge-transfer character and therefore arises from a dipolar structure. Overall, this structure-relationship study allows the optimization of the two-photon brightness (i.e., 400-900 GM) with one dye that emits in the NIR region of the spectrum. In addition, these dyes demonstrate high intracellular uptake efficiency in Cos7 cells with emission in the visible region, which is further improved by using porous silica nanoparticles as dye vehicles for the imaging of two mammalian carcinoma cells type based on NIR fluorescence emission.
Asunto(s)
Compuestos de Boro/síntesis química , Curcumina/química , Curcumina/síntesis química , Colorantes Fluorescentes/química , Ionóforos/química , Animales , Compuestos de Boro/química , Fluorescencia , Estructura Molecular , Procesos Fotoquímicos , Fotones , Teoría Cuántica , Espectrometría de FluorescenciaRESUMEN
Hemicurcuminoids are based on half of the π-conjugated backbone of curcuminoids. The synthesis of a series of such systems and their borondifluoride complexes is described. The electrochemical and photophysical properties of difluorodioxaborine species were investigated as a function of the nature of electron donor and acceptor groups appended at either terminal positions of the molecular backbone. The emissive character of these dipolar dyes was attributed to an intraligand charge transfer process, leading to fluorescence emission that is strongly dependent on solvent polarity. Quasi-quantitative quenching of fluorescence in high polarity solvents was attributed to photoinduced electron transfer. These dyes were shown to behave as versatile fluorophores. Indeed, they display efficient two-photon excited fluorescence emission leading to high two-photon brightness values. Furthermore, they form nanoparticles in water whose fluorescence emission quantum yield is less than that of the dye in solution, owing to aggregation-induced fluorescence quenching. When cos7 living cells were exposed to these weakly-emitting nanoparticles, one- and two-photon excited fluorescence spectra showed a strong emission within the cytoplasm that originated from the individual molecules. Dye uptake thus involved a disaggregation mechanism at the cell membrane which restored fluorescence emission. This off-on fluorescence switching allows a selective optical monitoring of those molecules that do enter the cell, which offers improved sensitivity and selectivity of detection for bioimaging purposes.
Asunto(s)
Curcumina/análogos & derivados , Curcumina/análisis , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/síntesis química , Hidrocarburos Halogenados/análisis , Hidrocarburos Halogenados/química , Imagen Molecular/métodos , Animales , Células COS , Membrana Celular/química , Membrana Celular/metabolismo , Chlorocebus aethiops , Curcumina/química , Citoplasma/química , Fluorescencia , Colorantes Fluorescentes/química , Hidrocarburos Halogenados/síntesis química , Estructura Molecular , Nanopartículas/química , Fotones , Espectrometría de FluorescenciaRESUMEN
More selective than crown ethers, cryptands arise as suitable hosts for several ions, with the size of the cavity and the behavior of the atoms belonging to the structure being the main factors governing their selectivity. Similar to metallacrowns, inorganic counterparts of crown ethers, the presence of metal centers in cryptands can offer significant advantages in terms of ion recognition as they provide positively charged sites, which allow them to encapsulate anions. Here, through density functional methodologies, we evaluate the preference of a tricopper(I) cryptand host toward a series of halide ions ranging from the hard fluoride to the soft iodide, where the more intense interactions are established with the hardest one, and the electrostatic term is the more relevant contributor to total interaction energy. Upon exploration of this electrostatic contribution in more detail, it is observed that as the guest becomes softer, the increase of higher order Coulombic terms, such as dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole, acquires more relevance on going from 9.22% to 41.25%, denoting the key role and variation of such forces in inclusion systems with metal-containing hosts.
RESUMEN
Hexanuclear copper(II) pyrazolate complexes have shown the ability to encapsulate different halide ions, leading to [trans-Cu6{µ-3,5-(CF3)2pz}6(µ-OH)6X](-) (X = F, Cl, Br, I). They offer an interesting case study for variation in local properties at host binding sites, due to the presence of a six membered ring involving Cu(II) centers considered as the borderline Lewis acid according to the Pearson Hard and Soft Acids and Bases (HSAB) principle. Here, we describe the host-guest interactions via relativistic density functional calculations, involving the graphical description of local dipole and quadrupole moments, energy decomposition analysis, non-covalent indices, and magnetic behavior. The observed variation in the copper local dipole and quadrupole moments suggests that a metallacycle host offers great advantages in comparison to their organic counterparts, prompted by the versatility of the metallic centers to modulate the surrounding electron density accordingly. According to our results, the contribution of ion-dipole forces in the halide-centered series decreases from 95.0% to 77.0% from the fluoride to the iodide complex, whereas the contribution of higher order interactions such as quadrupole-dipole and quadrupole-quadrupole, goes from 5.0% to 23.0% towards a softer guest. In addition, the through-the-space magnetic response of trans-Cu6{µ-3,5-(CF3)2pz}6(µ-OH)6, reveals a noteworthy aromatic structure, which is driven by the superexchange through the ligands leading to a singlet ground state.