RESUMEN
(1) Background: Regular exercise induces physiological and morphological changes in the organisms, but excessive training loads may induce damage and impair recovery or muscle growth. The purpose of the study was to evaluate the impact of Silymarin (SM) consumption on endurance capacity, muscle/cardiac histological changes, bodyweight, and food intake in rats subjected to 60 min of regular exercise training (RET) five days per week. (2) Methods: Male Wistar rats were subjected to an eight-week RET treadmill program and were previously administered SM and vitamin C. Bodyweight and food consumption were measured and registered. The maximal endurance capacity (MEC) test was performed at weeks one and eight. After the last training session, the animals were sacrificed, and samples of quadriceps/gastrocnemius and cardiac tissue were obtained and process for histological analyzes. (3) Results: SM consumption improved muscle recovery, inflammation, and damaged tissue, and promoted hypertrophy, vascularization, and muscle fiber shape/appearance. MEC increased after eight weeks of RET in all trained groups; moreover, the SM-treated group was enhanced more than the group with vitamin C. There were no significant changes in bodyweight and in food and nutrient consumption along the study. (5) Conclusion: SM supplementation may enhance physical performance, recovery, and muscle hypertrophy during the eight-week RET program.
Asunto(s)
Peso Corporal , Suplementos Dietéticos , Conducta Alimentaria , Músculo Esquelético/patología , Miocardio/patología , Condicionamiento Físico Animal , Rendimiento Físico Funcional , Silimarina/farmacología , Animales , Ácido Ascórbico/farmacología , Peso Corporal/efectos de los fármacos , Masculino , Músculo Esquelético/efectos de los fármacos , Resistencia Física/efectos de los fármacos , Ratas Wistar , Silimarina/químicaRESUMEN
Asthma is a chronic disease whose main anatomical-functional alterations are grouped into obstruction, nonspecific bronchial hyperreactivity, inflammation and airway remodeling. Currently, the Global Initiative of Asthma 2020 (GINA 2020) suggests classifying it into intermittent cases, slightly persistent, moderately persistent and severely persistent, thus determining the correct guidelines for its therapy. In general, the drugs used for its management are divided into two groups, those with a potential bronchodilator and the controlling agents of inflammation. However, asthmatic treatments continue to evolve, and notable advances have been made possible in biological therapy with monoclonal antibodies and in the relationship between this disease and oxidative stress. This opens a new path to dietary and herbal strategies and the use of antioxidants as a possible therapy that supports conventional pharmacological treatments and reduces their doses and/or adverse effects. This review compiles information from different published research on risk factors, pathophysiology, classification, diagnosis and the main treatments; likewise, it synthesizes the current evidence of herbal medicine for its control. Studies on integrative medicine (IM) therapies for asthmatic control are critically reviewed. An integrative approach to the prevention and management of asthma warrants consideration in clinical practice. The intention is to encourage health professionals and scientists to expand the horizons of basic and clinical research (preclinical, clinical and integrative medicine) on asthma control.
Asunto(s)
Asma/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Antioxidantes/uso terapéutico , Asma/clasificación , Asma/diagnóstico , Asma/fisiopatología , Broncodilatadores/uso terapéutico , Humanos , Estrés Oxidativo , Preparaciones de Plantas/uso terapéutico , Factores de RiesgoRESUMEN
In Mexico, the use of medicinal plants is the first alternative to treat the diseases of the most economically vulnerable population. Therefore, this review offers a list of Mexican plants (native and introduced) with teratogenic effects and describes their main alterations, teratogenic compounds, and the models and doses used. Our results identified 63 species with teratogenic effects (19 native) and the main alterations that were found in the nervous system and axial skeleton, induced by compounds such as alkaloids, terpenes, and flavonoids. Additionally, a group of hallucinogenic plants rich in alkaloids employed by indigenous groups without teratogenic studies were identified. Our conclusion shows that several of the identified species are employed in Mexican traditional medicine and that the teratogenic species most distributed in Mexico are Astragalus mollissimus, Astragalus lentiginosus, and Lupinus formosus. Considering the total number of plants in Mexico (≈29,000 total vascular plants), to date, existing research in the area shows that Mexican plants with teratogenic effects represent ≈0.22% of the total species of these in the country. This indicates a clear need to intensify the evaluation of the teratogenic effect of Mexican plants.
RESUMEN
Plants of the genus Opuntia spp are widely distributed in Africa, Asia, Australia and America. Specifically, Mexico has the largest number of wild species; mainly O. streptacantha, O. hyptiacantha, O. albicarpa, O. megacantha and O. ficus-indica. The latter being the most cultivated and domesticated species. Its main bioactive compounds include pigments (carotenoids, betalains and betacyanins), vitamins, flavonoids (isorhamnetin, kaempferol, quercetin) and phenolic compounds. Together, they favor the different plant parts and are considered phytochemically important and associated with control, progression and prevention of some chronic and infectious diseases. Part 1 collected information on its preventive actions against atherosclerotic cardiovascular diseases, diabetes and obesity, hepatoprotection, effects on human infertility and chemopreventive capacity. Now, this second review (Part 2), compiles the data from published research (in vitro, in vivo, and clinical studies) on its neuroprotective, anti-inflammatory, antiulcerative, antimicrobial, antiviral potential and in the treatment of skin wounds. The aim of both reviews is to provide scientific evidences of its beneficial properties and to encourage health professionals and researchers to expand studies on the pharmacological and therapeutic effects of Opuntia spp.
RESUMEN
The mobility of the human body depends on, among other things, muscle health, which can be affected by several situations, such as aging, increased oxidative stress, malnutrition, cancer, and the lack or excess of physical exercise, among others. Genetic, metabolic, hormonal, and nutritional factors are intricately involved in maintaining the balance that allows proper muscle function and fiber recovery; therefore, the breakdown of the balance among these elements can trigger muscle atrophy. The study from the nutrigenomic perspective of nutritional factors has drawn wide attention recently; one of these is the use of certain compounds derived from foods and plants known as phytochemicals, to which various biological activities have been described and attributed in terms of benefiting health in many respects. This work addresses the effect that the phytochemicals curcumin from Curcuma longa Linn and sulforaphane from Brassicaceae species have shown to exert on muscle function, recovery, and the prevention of muscle atrophy, and describes the impact on muscle health in general. In the same manner, there are future perspectives in research on novel compounds as potential agents in the prevention or treatment of medical conditions that affect muscle health.
RESUMEN
The potential of polyphenols for treating chronic-degenerative diseases (particularly neurodegenerative diseases) is attractive. However, the selection of the best polyphenol for each treatment, the mechanisms by which they act, and their efficacy are frequently discussed. In this review, the basics and the advances in the field, as well as suggestions for using natural and synthetic polyphenols alone or in a combinatorial strategy with stem cell assays, are compiled and discussed. Thus, stem cells exhibit several responses when polyphenols are added to their environment, which could provide us with knowledge for advancing the elucidation of the origin of neurodegeneration. But also, polyphenols are being included in the innovative strategies of novel therapies for treating neurodegenerative diseases as well as metabolic diseases related to neurodegeneration. In this regard, flavonoid compounds are suggested as the best natural polyphenols due to their several mechanisms for acting in ameliorative effects; but increasing reports are involving other polyphenols. Even if some facts limiting bioactivity prevent them from conventional use, some natural polyphenols and derivatives hold the promise for being improved compounds, judged by their induced effects. The current results suggest polyphenols as enhancers of stem cell therapy against the targeted diseases.
RESUMEN
The practice of physical exercise induces a series of physiological changes in the body at different levels, either acutely or chronically. During exercise, the increase in oxygen consumption promotes the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are necessary to maintain homeostasis. ROS/RNS activate cellular signaling pathways, such as the antioxidant cytoprotective systems, inflammation, and cell proliferation, which are crucial for cell survival. However, in exhaustive-extended physical exercise, workloads can exceed the endogenous antioxidant defenses, which may be related to impairment of muscle contraction, fatigue, and a decrease in athletic performance. This review addresses the role of some antioxidants from plant-derived extracts called phytochemicals that can mediate the response to oxidative stress induced by physical exercise by activating signaling pathways, such as Nrf2/Keap1/ARE, responsible for the endogenous antioxidant response and possibly having an impact on sports performance.
RESUMEN
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), has affected millions of people globally. It was declared a pandemic by the World Health Organization in March 2020. The hyperinflammatory response to the entry of SARS-CoV-2 into the host through angiotensin-converting enzyme 2 is the result of a "cytokine storm" and the high oxidative stress responsible for the associated symptomatology. Not only respiratory symptoms are reported, but gastrointestinal symptoms (diarrhea, vomiting, and nausea) and liver abnormalities (high levels of aspartate aminotransferase, alanine aminotransferase transaminases, and bilirubin) are observed in at least 30% of patients. Reduced food intake and a delay in medical services may lead to malnutrition, which increases mortality and poor outcomes. This review provides some strategies to identify malnutrition and establishes nutritional approaches for the management of COVID-19 and liver injury, taking energy and nutrient requirements and their impact on the immune response into account. The roles of certain phytochemicals in the prevention of the disease or as promising target drugs in the treatment of this disease are also considered.
Asunto(s)
COVID-19 , Peptidil-Dipeptidasa A , Humanos , Hígado , Fitoquímicos/uso terapéutico , SARS-CoV-2RESUMEN
BACKGROUND: Exercise training induces adaptive physiological and morphological modifications in the entire organism; however, excessive loads of training may increase damage in tissues. The purpose of this study was to evaluate the effect of silymarin in lung and liver histological changes in rats subjected to exercise training (ET). METHODS: Male Wistar rats were subjected to an 8-week ET treadmill program 5 days per week, 60 min/session, and were previously administered 100 mg ascorbic acid or 100 mg of silymarin. RESULTS: Silymarin increased alveolar and bronchial muscle size, improve vascularization, and reduced tissue inflammation. In liver, silymarin promoted the reduction of lipid content. CONCLUSION: Silymarin supplementation may improve inflammation in pulmonary tissue after 8 weeks of the ET treadmill program, improve cell recovery, and reduce intrahepatic lipid content.
RESUMEN
Cells have the ability to adapt to stressful environments as a part of their evolution. Physical exercise induces an increase of a demand for energy that must be met by mitochondria as the main (ATP) provider. However, this process leads to the increase of free radicals and the so-called reactive oxygen species (ROS), which are necessary for the maintenance of cell signaling and homeostasis. In addition, mitochondrial biogenesis is influenced by exercise in continuous crosstalk between the mitochondria and the nuclear genome. Excessive workloads may induce severe mitochondrial stress, resulting in oxidative damage. In this regard, the objective of this work was to provide a general overview of the molecular mechanisms involved in mitochondrial adaptation during exercise and to understand if some nutrients such as antioxidants may be implicated in blunt adaptation and/or an impact on the performance of exercise by different means.
RESUMEN
Silymarin (SM) is a mixture of flavolignans extracted from the seeds of species derived from Silybum marianum, commonly known as milk thistle or St. Mary'sthistle. These species have been widely used in the treatment of liver disorders in traditional medicine since ancient times. Several properties had been attributed to the major SM flavolignans components, identified as silybin, isosilybin, silychristin, isosilychristin, and silydianin. Previous research reported antioxidant and protective activities, which are probably related to the activation of the nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2), known as a master regulator of the cytoprotector response. Nrf2 is a redox-sensitive nuclear transcription factor able to induce the downstream-associated genes. The disruption of Nrf2 signaling has been associated with different pathological conditions. Some identified phytochemicals from SM had shown to participate in the Nrf2 signaling pathway; in particular, they have been suggested as activators that disrupt interactions in the Keap1-Nrf2 system, but also as antioxidants or with additional actions regarding Nrf2 regulation. Thus, the study of these molecules makes them appear attractive as novel targets for the treatment or prevention of several diseases.
RESUMEN
Roselle (Hibiscus sabdariffa L.), also known as jamaica in Spanish, is a perennial plant that grows in tropical and subtropical regions, including China, Egypt, Indonesia, Mexico, Nigeria, Thailand, and Saudi Arabia. It has a long history of uses, mainly focused on culinary, botanical, floral, cosmetic, and medicinal uses. The latter being of great impact due to the diuretic, choleretic, analgesic, antitussive, antihypertensive, antimicrobial, immunomodulatory, hepatoprotective, antioxidant, and anti-cancer effects. These therapeutic properties have been attributed to the bioactive compounds of the plant, mainly phenolic acids, flavonoids, anthocyanins, and organic acids (citric, hydroxycitric, hibiscus, tartaric, malic, and ascorbic). Most literature reviews and meta-analyses on the therapeutic potential of Hibiscus sabdariffa L. (Hs) compounds have not adequately addressed the contributions of its organic acids present in the Hs extracts. This review compiles information from published research (in vitro, in vivo, and clinical studies) on demonstrated pharmacological properties of organic acids found in Hs. The intent is to encourage and aid researchers to expand their studies on the pharmacologic and therapeutic effects of Hs to include assessments of the organic acid components.
RESUMEN
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a powerful nuclear transcription factor that coordinates an antioxidant cytoprotector system complex stimulated by the increase in inoxidative stress (OS). In the present manuscript, we conduct a review on the evidence that shows the effect different modalities of physical exercise exert on the antioxidant metabolic response directed by Nrf2. During physical exercise, the reactive oxygen species (ROS) are increased; therefore, if the endogenous and exogenous antioxidant defenses are unable to control the elevation of ROS, the resulting OS triggers the activation of the transcriptional factor Nrf2 to induce the antioxidant response. On a molecular basis related to physical exercise, hormesis maintenance (exercise preconditioning) and adaptative changes in training are supported by a growing body of evidence, which is important for detailing the health benefits that involve greater resistance to environmental aggressions, better tolerance to constant changes, and increasing the regenerative capacity of the cells in such a way that it may be used as a tool to support the prevention or treatment of diseases. This may have clinical implications for future investigations regarding physical exercise in terms of understanding adaptations in high-performance athletes but also as a therapeutic model in several diseases.
RESUMEN
Background: The need to advance and achieve success is deeply ingrained in human evolution. As a species, humans developed instincts that allowed them to survive and transmit their genes along generations. The will to win is an instinct that has been maintained in the species for millions of years. Sport is an activity as old as humans themselves and is subject to rules; Objective: The proposal of this work is to explore some of the most recurrent practices to achieve the athletes' goals, and the origins and historical use of methods or substances to improve performance and its regulation, as well as to review the impact of new technologies on achieving better results and to make a proposal of what actions should be takenin order to prevent bad practices; Methods: A narrative literature review of ethical sports issues and decision-making was performed in the English language; Results: Practically all behavior with regards to the theme of sports is regulated by ethical codes that must be followed by sportspersons, as well as by everyone involved in the athlete's healthcare and in the athlete's administrative, marketing, and business aspects. Notwithstanding this, winning and reaping glory implies a reward far greater than fame and fortune, which can lead to poor ethical practices in athletes, as well as in interested parties who detract from the intrinsic value of the spirit of sports. The will to win could exceed the limits of what is permitted in fair-play, like the use of prohibited methods or substances; Conclusions: In this work, we review some of the bioethical aspects ofsports. Additionally, recommendations are offered for good practices and to prevent falling into poor ethical behavior.
RESUMEN
Geranium schiedeanum has been used in traditional therapies as an antiseptic, antipyretic, and as analgesic. The present study was designed to evaluate the pretreatment with G. schiedeanum total extract (GS) and its active metabolites on stimulating the endogenous antioxidant defense system (EADS): catalase (Cat), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione reduction index (RI GSH/GSSG) in rat liver treated with a sublethal dose (6.6 mmol/Kg) of thioacetamide (TAA) in order to probe the capacity of GS and the active compounds to reduce liver injury. This was assessed by measuring aspartate aminotransferase (AST), alanine aminotransferase (ALT), and total bilirubin (BILT) in rats pretreated or not with TAA, and pretreated or not with GS and its metabolites. The results showed that GS was able to induce the production of EADS enzymes, increasing redox index GSH/GSSG at 24 and 48 h after intoxication, and both the extract and the ellagic acid exhibited a significant reduction of hepatic damage markers. Our data confirmed the hepatoprotective effect of GS and its metabolites, like ellagic acid, support the possible use of this extract in the treatment of liver injury.
RESUMEN
AIM: To examine the association between weekend alcohol consumption and the biochemical and histological alterations at two different concentrations of alcohol in both genders in rats. METHODS: Wistar rats weighing 170-200 g were divided into groups as follows: (1) Control groups; and (2) weekend alcohol-consumption group: 2 d/weekly per 12 wk, at two different concentrations: (1) Group of males or females with a consumption of a solution of alcohol at 40%; and (2) group of males or females with a consumption of a solution of alcohol at 5%. At the end of the experiment, serum and liver samples were obtained. The following enzymes and metabolites were determined in serum: Alanine Aminotransferase (ALT), Aspartate Aminotransferase (AST), Lactate Dehydrogenase, and Gamma-Glutamyltransferase, and glucose, triglycerides, cholesterol, bilirubin, and albumin. Liver samples from each group were employed to analyze morphological abnormalities by light microscopy. RESULTS: In all of the weekend alcohol-consumption groups, AST activity presented a significant, 10-fold rise. Regarding ALT activity, the groups with weekend alcohol consumption presented a significant increase that was six times greater. Bilirubin levels increased significantly in both groups of females. We observed a significant increase in the parameters of fatty change and inflammation due to weekend alcohol consumption. Only the group of females that consumed alcohol at 40% presented slight hepatocellular disorganization. CONCLUSION: The results obtained herein provide solid evidence that weekend alcohol consumption gives rise to liver damage, demonstrated by biochemical and histological alterations, first manifested acutely, and prolonged weekend alcohol consumption can cause greater, irreversible damage.
RESUMEN
The use of medicinal plants in treating illnesses has been reported since ancestral times. In the case of hepatic diseases, several species such as Silybum marianum, Phyllanthus niruri, and Panus giganteus (Berk.) have been shown to ameliorate hepatic lesions. Silymarin is a natural compound derived from the species Silybum marianum, which is commonly known as Milk thistle. This plant contains at least seven flavoligands and the flavonoid taxifolin. The hepatoprotective and antioxidant activity of silymarin is caused by its ability to inhibit the free radicals that are produced from the metabolism of toxic substances such as ethanol, acetaminophen, and carbon tetrachloride. The generation of free radicals is known to damage cellular membranes and cause lipoperoxidation. Silymarin enhances hepatic glutathione and may contribute to the antioxidant defense of the liver. It has also been shown that silymarin increases protein synthesis in hepatocytes by stimulating RNA polymerase I activity. A previous study on humans reported that silymarin treatment caused a slight increase in the survival of patients with cirrhotic alcoholism compared with untreated controls.
RESUMEN
Mycotoxins are produced mainly by the mycelial structure of filamentous fungi, or more specifically, molds. These secondary metabolites are synthesized during the end of the exponential growth phase and appear to have no biochemical significance in fungal growth and development. The contamination of foods and feeds with mycotoxins is a significant problem for the adverse effects on humans, animals, and crops that result in illnesses and economic losses. The toxic effect of the ingestion of mycotoxins in humans and animals depends on a number of factors including intake levels, duration of exposure, toxin species, mechanisms of action, metabolism, and defense mechanisms. In general, the consumption of contaminated food and feed with mycotoxin induces to neurotoxic, immunosuppressive, teratogenic, mutagenic, and carcinogenic effect in humans and/or animals. The most significant mycotoxins in terms of public health and agronomic perspective include the aflatoxins, ochratoxin A (OTA), trichothecenes, fumonisins, patulin, and the ergot alkaloids. Due to the detrimental effects of these mycotoxins, several strategies have been developed in order to reduce the risk of exposure. These include the degradation, destruction, inactivation or removal of mycotoxins through chemical, physical and biological methods. However, the results obtained with these methods have not been optimal, because they may change the organoleptic characteristics and nutritional values of food. Another alternative strategy to prevent or reduce the toxic effects of mycotoxins is by applying antimutagenic agents. These substances act according to several extra- or intracellular mechanisms, their main goal being to avoid the interaction of mycotoxins with DNA; as a consequence of their action, these agents would inhibit mutagenesis and carcinogenesis. This article reviews the main strategies used to control AFB(1) and ochratoxin A and contains an analysis of some antigenotoxic substances that reduce the DNA damage caused by these mycotoxins.