Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Cell Sci ; 131(3)2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29222113

RESUMEN

Myosins are critical motor proteins that contribute to the secretory pathway, polarized growth, and cytokinesis. The globular tail domains of class V myosins have been shown to be important for cargo binding and actin cable organization. Additionally, phosphorylation plays a role in class V myosin cargo choice. Our previous studies on the class V myosin MyoE in the fungal pathogen Aspergillus fumigatus confirmed its requirement for normal morphology and virulence. However, the domains and molecular mechanisms governing the functions of MyoE remain unknown. Here, by analyzing tail mutants, we demonstrate that the tail is required for radial growth, conidiation, septation frequency and MyoE's location at the septum. Furthermore, MyoE is phosphorylated at multiple residues in vivo; however, alanine substitution mutants revealed that no single phosphorylated residue was critical. Importantly, in the absence of the phosphatase calcineurin, an additional residue was phosphorylated in its tail domain. Mutation of this tail residue led to mislocalization of MyoE from the septa. This work reveals the importance of the MyoE tail domain and its phosphorylation/dephosphorylation in the growth and morphology of A. fumigatus.


Asunto(s)
Aspergillus fumigatus/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Hifa/crecimiento & desarrollo , Miosina Tipo V/química , Miosina Tipo V/metabolismo , Acetilación , Actinas/metabolismo , Calcineurina/metabolismo , Secuencia Conservada , Microtúbulos/metabolismo , Modelos Biológicos , Proteínas Mutantes/metabolismo , Fenotipo , Fosforilación , Dominios Proteicos , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Eliminación de Secuencia , Esporas Fúngicas/metabolismo , Relación Estructura-Actividad
2.
Biochem Biophys Res Commun ; 485(2): 221-226, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28238781

RESUMEN

Aspergillus fumigatus, the main etiological agent of invasive aspergillosis, is a leading cause of death in immunocompromised patients. Septins, a conserved family of GTP-binding proteins, serve as scaffolding proteins to recruit enzymes and key regulators to different cellular compartments. Deletion of the A. fumigatus septin aspB increases susceptibility to the echinocandin antifungal caspofungin. However, how AspB mediates this response to caspofungin is unknown. Here, we characterized the AspB interactome under basal conditions and after exposure to a clinically relevant concentration of caspofungin. While A. fumigatus AspB interacted with 334 proteins, including kinases, cell cycle regulators, and cell wall synthesis-related proteins under basal growth conditions, caspofungin exposure altered AspB interactions. A total of 69 of the basal interactants did not interact with AspB after exposure to caspofungin, and 54 new interactants were identified following caspofungin exposure. We generated A. fumigatus deletion strains for 3 proteins (ArpB, Cyp4, and PpoA) that only interacted with AspB following exposure to caspofungin that were previously annotated as induced after exposure to antifungal agents, yet only PpoA was implicated in the response to caspofungin. Taken together, we defined how the septin AspB interactome is altered in the presence of a clinically relevant antifungal.


Asunto(s)
Antifúngicos/farmacología , Aspergilosis/tratamiento farmacológico , Aspergillus fumigatus/efectos de los fármacos , Equinocandinas/farmacología , Proteínas Fúngicas/metabolismo , Lipopéptidos/farmacología , Mapas de Interacción de Proteínas/efectos de los fármacos , Septinas/metabolismo , Aspergilosis/microbiología , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Caspofungina , Proteínas Fúngicas/genética , Eliminación de Gen , Humanos , Septinas/genética
3.
Infect Immun ; 84(5): 1556-64, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26953327

RESUMEN

Myosins are a family of actin-based motor proteins found in many organisms and are categorized into classes based on their structures. Class II and V myosins are known to be important for critical cellular processes, including cytokinesis, endocytosis, exocytosis, and organelle trafficking, in the model fungi Saccharomyces cerevisiae and Aspergillus nidulans However, the roles of myosins in the growth and virulence of the pathogen Aspergillus fumigatus are unknown. We constructed single- and double-deletion strains of the class II and class V myosins in A. fumigatus and found that while the class II myosin (myoB) is dispensable for growth, the class V myosin (myoE) is required for proper hyphal extension; deletion of myoE resulted in hyperbranching and loss of hyphal polarity. Both myoB and myoE are necessary for proper septation, conidiation, and conidial germination, but only myoB is required for conidial viability. Infection with the ΔmyoE strain in the invertebrate Galleria mellonella model and also in a persistently immunosuppressed murine model of invasive aspergillosis resulted in hypovirulence, while analysis of bronchoalveolar lavage fluid revealed that tumor necrosis factor alpha (TNF-α) release and cellular infiltration were similar compared to those of the wild-type strain. The ΔmyoE strain showed fungal growth in the murine lung, while the ΔmyoB strain exhibited little fungal burden, most likely due to the reduced conidial viability. These results show, for the first time, the important role these cytoskeletal components play in the growth of and disease caused by a known pathogen, prompting future studies to understand their regulation and potential targeting for novel antifungal therapies.


Asunto(s)
Aspergillus fumigatus/crecimiento & desarrollo , Aspergillus fumigatus/patogenicidad , Proteínas Fúngicas/metabolismo , Hifa/crecimiento & desarrollo , Miosinas/metabolismo , Animales , Aspergilosis/microbiología , Aspergilosis/patología , Aspergillus fumigatus/genética , Recuento de Colonia Microbiana , Proteínas Fúngicas/genética , Técnicas de Inactivación de Genes , Pulmón/microbiología , Masculino , Ratones , Viabilidad Microbiana , Miosinas/deficiencia , Esporas Fúngicas/crecimiento & desarrollo , Virulencia
4.
Microbiology (Reading) ; 162(9): 1527-1534, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27559018

RESUMEN

Septins are a conserved family of GTP-binding proteins that are distributed across different lineages of the eukaryotes, with the exception of plants. Septins perform a myriad of functions in fungal cells, ranging from controlling morphogenetic events to contributing to host tissue invasion and virulence. One key attribute of the septins is their ability to assemble into heterooligomeric complexes that organizse into higher order structures. In addition to the established role of septins in the model budding yeast, Saccharomyces cerevisiae, their importance in other fungi recently emerges. While newer roles for septins are being uncovered in these fungi, the mechanism of how septins assemble into a complex and their regulation is only beginning to be comprehended. In this review, we summarize recent findings on the role of septins in different fungi and focus on how the septin complexes of different fungi are organized in vitro and in vivo. Furthermore, we discuss on how phosphorylation/dephosphorylation can serve as an important mechanism of septin complex assembly and regulation.


Asunto(s)
Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Septinas/metabolismo , Proteínas Fúngicas/genética , Hongos/genética , Hongos/crecimiento & desarrollo , Hongos/patogenicidad , Septinas/genética , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/metabolismo , Virulencia
5.
Fungal Genet Biol ; 81: 41-51, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26051489

RESUMEN

Septins are a conserved family of GTPases that regulate important cellular processes such as cell wall integrity, and septation in fungi. The requirement of septins for virulence has been demonstrated in the human pathogenic yeasts Candida albicans and Cryptococcus neoformans, as well as the plant pathogen Magnaporthe oryzae. Aspergillus spp. contains five genes encoding for septins (aspA-E). While the importance of septins AspA, AspB, AspC, and AspE for growth and conidiation has been elucidated in the filamentous fungal model Aspergillus nidulans, nothing is known on the role of septins in growth and virulence in the human pathogen Aspergillus fumigatus. Here we deleted all five A. fumigatus septins, and generated certain double and triple septin deletion strains. Phenotypic analyses revealed that while all the septins are dispensable in normal growth conditions, AspA, AspB, AspC and AspE are required for regular septation. Furthermore, deletion of only the core septin genes significantly reduced conidiation. Concomitant with the absence of an electron-dense outer conidial wall, the ΔaspB strain was also sensitive to anti-cell wall agents. Infection with the ΔaspB strain in a Galleria mellonella model of invasive aspergillosis showed hypervirulence, but no virulence difference was noted when compared to the wild-type strain in a murine model of invasive aspergillosis. Although the deletion of aspB resulted in increased release of TNF-α from the macrophages, no significant inflammation differences in lung histology was noted between the ΔaspB strain and the wild-type strain. Taken together, these results point to the importance of septins in A. fumigatus growth, but not virulence in a murine model.


Asunto(s)
Aspergillus fumigatus/fisiología , División Celular , Pared Celular/metabolismo , Septinas/metabolismo , Esporas Fúngicas/crecimiento & desarrollo , Animales , Aspergilosis/microbiología , Aspergilosis/patología , Aspergillus fumigatus/genética , Modelos Animales de Enfermedad , Eliminación de Gen , Lepidópteros/microbiología , Lepidópteros/fisiología , Ratones , Septinas/genética , Virulencia
6.
Science ; 385(6705): 142-143, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38991085

RESUMEN

A fungus uses different cell entry strategies, depending on its host's hibernation status.


Asunto(s)
Ascomicetos , Quirópteros , Hibernación , Interacciones Huésped-Patógeno , Animales , Quirópteros/microbiología , Quirópteros/fisiología , Ascomicetos/patogenicidad
7.
Sci Adv ; 10(31): eado5555, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093965

RESUMEN

Because of the decreasing supply of new antibiotics, recent outbreaks of infectious diseases, and the emergence of antibiotic-resistant microorganisms, it is imperative to develop new effective strategies for deactivating a broad spectrum of microorganisms and viruses. We have implemented electrically polarized nanoscale metallic (ENM) coatings that deactivate a wide range of microorganisms including Gram-negative and Gram-positive bacteria with greater than 6-log reduction in less than 10 minutes of treatment. The electrically polarized devices were also effective in deactivating lentivirus and Candida albicans. The key to the high deactivation effectiveness of ENM devices is electrochemical production of micromolar cuprous ions, which mediated reduction of oxygen to hydrogen peroxide. Formation of highly damaging species, hydroxyl radicals and hypochlorous acid, from hydrogen peroxide contributed to antimicrobial properties of the ENM devices. The electric polarization of nanoscale coatings represents an unconventional tool for deactivating a broad spectrum of microorganisms through in situ production of reactive oxygenated and chlorinated species.


Asunto(s)
Peróxido de Hidrógeno , Peróxido de Hidrógeno/metabolismo , Oxígeno/metabolismo , Oxígeno/química , Candida albicans/efectos de los fármacos , Candida albicans/metabolismo , Propiedades de Superficie , Especies Reactivas de Oxígeno/metabolismo , Antiinfecciosos/farmacología , Antiinfecciosos/química , Oxidación-Reducción
8.
J Cell Biol ; 222(3)2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36786832

RESUMEN

Septins are a family of conserved filament-forming proteins that function in multiple cellular processes. The number of septin genes within an organism varies, and higher eukaryotes express many septin isoforms due to alternative splicing. It is unclear if different combinations of septin proteins in complex alter the polymers' biophysical properties. We report that a duplication event within the CDC11 locus in Ashbya gossypii gave rise to two similar but distinct Cdc11 proteins: Cdc11a and Cdc1b. CDC11b transcription is developmentally regulated, producing different amounts of Cdc11a- and Cdc11b-complexes in the lifecycle of Ashbya gossypii. Deletion of either gene results in distinct cell polarity defects, suggesting non-overlapping functions. Cdc11a and Cdc11b complexes have differences in filament length and membrane-binding ability. Thus, septin subunit composition has functional consequences on filament properties and cell morphogenesis. Small sequence differences elicit distinct biophysical properties and cell functions of septins, illuminating how gene duplication could be a driving force for septin gene expansions seen throughout the tree of life.


Asunto(s)
Eremothecium , Proteínas Fúngicas , Septinas , Citoesqueleto/metabolismo , Eremothecium/metabolismo , Duplicación de Gen , Septinas/metabolismo , Proteínas Fúngicas/metabolismo , Polaridad Celular
9.
Front Fungal Biol ; 3: 941691, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37746169

RESUMEN

Hortaea werneckii is a black yeast with a remarkable tolerance to salt. Most studies have been dedicated to understanding how H. werneckii adapts to hypersaline environments. H. werneckii has an unconventional cell cycle in which it alternates between fission and budding, which is modulated by cell density. Additionally, H. werneckii can cause superficial mycosis of the palm and sole of humans. Here, we determine the impact of salt concentration on the EXF-2000 strain's cell division pattern and morphology by performing timelapse microscopy at different salt concentrations. At low density and no salt, EXF-2000 primarily grows as pseudohyphae dividing mainly by septation. When grown in the presence of salt at a similar concentration to saltwater or hypersaline environments, we observe it grows first by undergoing fission followed by budding at the poles. Then, we examined a collection of 16 isolates in the presence of 0.6M NaCl, including isolates from marine and hypersaline environments and isolates from patients. These isolates exhibit a wide diversity in colony shape and cellular morphology. The isolates grew as yeast, pseudohyphae, and true hyphae, indicating that isolates can exhibit various cell morphologies under similar environmental conditions. We used the insect larvae Galleria mellonella to determine the pathogenic potential of our isolates. We observe that only a subset of isolates can cause death in our model, and there was no correlation between H. werneckii morphology and capacity to cause disease. Taken together, H. werneckii genomic and phenotypic diversity can serve as a model to better understand how phenotypes and pathogenic potential evolve in environmental fungi.

10.
Curr Biol ; 29(20): 3439-3456.e5, 2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31607535

RESUMEN

Fungi have been found in every marine habitat that has been explored; however, the diversity and functions of fungi in the ocean are poorly understood. In this study, fungi were cultured from the marine environment in the vicinity of Woods Hole, MA, USA, including from plankton, sponge, and coral. Our sampling resulted in 35 unique species across 20 genera. We observed many isolates by time-lapse, differential interference contrast (DIC) microscopy and analyzed modes of growth and division. Several black yeasts displayed highly unconventional cell division cycles compared to those of traditional model yeast systems. Black yeasts have been found in habitats inhospitable to other life and are known for halotolerance, virulence, and stress resistance. We find that this group of yeasts also shows remarkable plasticity in terms of cell size control, modes of cell division, and cell polarity. Unexpected behaviors include division through a combination of fission and budding, production of multiple simultaneous buds, and cell division by sequential orthogonal septations. These marine-derived yeasts reveal alternative mechanisms for cell division cycles that seem likely to expand the repertoire of rules established from classic model system yeasts.


Asunto(s)
División Celular , Levaduras/fisiología , Océano Atlántico , Massachusetts
11.
Front Microbiol ; 7: 997, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27446037

RESUMEN

Septins are a conserved family of GTPases that form hetero-oligomeric complexes and perform diverse functions in higher eukaryotes, excluding plants. Our previous studies in the human fungal pathogen Aspergillus fumigatus revealed that the core septin, AspB, a CDC3 ortholog, is required for septation, conidiation, and conidial cell wall organization. Although AspB is important for these cellular functions, nothing is known about the role of kinases or phosphatases in the posttranslational regulation and localization of septins in A. fumigatus. In this study, we assessed the function of the Gin4 and Cla4 kinases and the PP2A regulatory subunit ParA, in the regulation of AspB using genetic and phosphoproteomic approaches. Gene deletion analyses revealed that Cla4 and ParA are indispensable for hyphal extension, and Gin4, Cla4, and ParA are each required for conidiation and normal septation. While deletion of gin4 resulted in larger interseptal distances and hypervirulence, a phenotype mimicking aspB deletion, deletion of cla4 and parA caused hyperseptation without impacting virulence, indicating divergent roles in regulating septation. Phosphoproteomic analyses revealed that AspB is phosphorylated at five residues in the GTPase domain (S134, S137, S247, T297, and T301) and two residues at its C-terminus (S416 and S461) in the wild-type, Δgin4 and Δcla4 strains. However, concomitant with the differential localization pattern of AspB and hyperseptation in the ΔparA strain, AspB remained phosphorylated at two additional residues, T68 in the N-terminal polybasic region and S447 in the coiled-coil domain. Generation of nonphosphorylatable and phosphomimetic strains surrounding each differentially phosphorylated residue revealed that only AspB (mt) -T68E showed increased interseptal distances, suggesting that dephosphorylation of T68 is important for proper septation. This study highlights the importance of septin phosphorylation/dephosphorylation in the regulation of A. fumigatus hyphal septation.

12.
PLoS One ; 10(9): e0137869, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26366742

RESUMEN

Invasive aspergillosis, largely caused by Aspergillus fumigatus, is responsible for a growing number of deaths among immunosuppressed patients. Immunosuppressants such as FK506 (tacrolimus) that target calcineurin have shown promise for antifungal drug development. FK506-binding proteins (FKBPs) form a complex with calcineurin in the presence of FK506 (FKBP12-FK506) and inhibit calcineurin activity. Research on FKBPs in fungi is limited, and none of the FKBPs have been previously characterized in A. fumigatus. We identified four orthologous genes of FKBP12, the human FK506 binding partner, in A. fumigatus and designated them fkbp12-1, fkbp12-2, fkbp12-3, and fkbp12-4. Deletional analysis of the four genes revealed that the Δfkbp12-1 strain was resistant to FK506, indicating FKBP12-1 as the key mediator of FK506-binding to calcineurin. The endogenously expressed FKBP12-1-EGFP fusion protein localized to the cytoplasm and nuclei under normal growth conditions but also to the hyphal septa following FK506 treatment, revealing its interaction with calcineurin. The FKBP12-1-EGFP fusion protein didn't localize at the septa in the presence of FK506 in the cnaA deletion background, confirming its interaction with calcineurin. Testing of all deletion strains in the Galleria mellonella model of aspergillosis suggested that these proteins don't play an important role in virulence. While the Δfkbp12-2 and Δfkbp12-3 strains didn't show any discernable phenotype, the Δfkbp12-4 strain displayed slight growth defect under normal growth conditions and inhibition of the caspofungin-mediated "paradoxical growth effect" at higher concentrations of the antifungal caspofungin. Together, these results indicate that while only FKBP12-1 is the bona fide binding partner of FK506, leading to the inhibition of calcineurin in A. fumigatus, FKBP12-4 may play a role in basal growth and the caspofungin-mediated paradoxical growth response. Exploitation of differences between A. fumigatus FKBP12-1 and human FKBP12 will be critical for the generation of fungal-specific FK506 analogs to inhibit fungal calcineurin and treat invasive fungal disease.


Asunto(s)
Aspergillus fumigatus/genética , Proteína 1A de Unión a Tacrolimus/genética , Animales , Antifúngicos/farmacología , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/patogenicidad , Calcineurina/metabolismo , Caspofungina , Ciclosporina/farmacología , Equinocandinas/farmacología , Eliminación de Gen , Humanos , Hifa/efectos de los fármacos , Hifa/genética , Hifa/crecimiento & desarrollo , Lipopéptidos , Pruebas de Sensibilidad Microbiana , Mariposas Nocturnas/microbiología , Filogenia , Tacrolimus/metabolismo , Tacrolimus/farmacología , Proteína 1A de Unión a Tacrolimus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA