Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Brain ; 143(9): 2788-2802, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32851402

RESUMEN

The hippocampus is a plastic region and highly susceptible to ageing and dementia. Previous studies explicitly imposed a priori models of hippocampus when investigating ageing and dementia-specific atrophy but led to inconsistent results. Consequently, the basic question of whether macrostructural changes follow a cytoarchitectonic or functional organization across the adult lifespan and in age-related neurodegenerative disease remained open. The aim of this cross-sectional study was to identify the spatial pattern of hippocampus differentiation based on structural covariance with a data-driven approach across structural MRI data of large cohorts (n = 2594). We examined the pattern of structural covariance of hippocampus voxels in young, middle-aged, elderly, mild cognitive impairment and dementia disease samples by applying a clustering algorithm revealing differentiation in structural covariance within the hippocampus. In all the healthy and in the mild cognitive impaired participants, the hippocampus was robustly divided into anterior, lateral and medial subregions reminiscent of cytoarchitectonic division. In contrast, in dementia patients, the pattern of subdivision was closer to known functional differentiation into an anterior, body and tail subregions. These results not only contribute to a better understanding of co-plasticity and co-atrophy in the hippocampus across the lifespan and in dementia, but also provide robust data-driven spatial representations (i.e. maps) for structural studies.


Asunto(s)
Bases de Datos Factuales/tendencias , Demencia/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Longevidad/fisiología , Red Nerviosa/diagnóstico por imagen , Adulto , Anciano , Atrofia , Estudios de Cohortes , Demencia/patología , Femenino , Hipocampo/patología , Humanos , Masculino , Persona de Mediana Edad , Red Nerviosa/patología , Adulto Joven
2.
Neuroimage ; 173: 394-410, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29518572

RESUMEN

The relationship between grey matter volume (GMV) patterns and age can be captured by multivariate pattern analysis, allowing prediction of individuals' age based on structural imaging. Raw data, voxel-wise GMV and non-sparse factorization (with Principal Component Analysis, PCA) show good performance but do not promote relatively localized brain components for post-hoc examinations. Here we evaluated a non-negative matrix factorization (NNMF) approach to provide a reduced, but also interpretable representation of GMV data in age prediction frameworks in healthy and clinical populations. This examination was performed using three datasets: a multi-site cohort of life-span healthy adults, a single site cohort of older adults and clinical samples from the ADNI dataset with healthy subjects, participants with Mild Cognitive Impairment and patients with Alzheimer's disease (AD) subsamples. T1-weighted images were preprocessed with VBM8 standard settings to compute GMV values after normalization, segmentation and modulation for non-linear transformations only. Non-negative matrix factorization was computed on the GM voxel-wise values for a range of granularities (50-690 components) and LASSO (Least Absolute Shrinkage and Selection Operator) regression were used for age prediction. First, we compared the performance of our data compression procedure (i.e., NNMF) to various other approaches (i.e., uncompressed VBM data, PCA-based factorization and parcellation-based compression). We then investigated the impact of the granularity on the accuracy of age prediction, as well as the transferability of the factorization and model generalization across datasets. We finally validated our framework by examining age prediction in ADNI samples. Our results showed that our framework favorably compares with other approaches. They also demonstrated that the NNMF based factorization derived from one dataset could be efficiently applied to compress VBM data of another dataset and that granularities between 300 and 500 components give an optimal representation for age prediction. In addition to the good performance in healthy subjects our framework provided relatively localized brain regions as the features contributing to the prediction, thereby offering further insights into structural changes due to brain aging. Finally, our validation in clinical populations showed that our framework is sensitive to deviance from normal structural variations in pathological aging.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/crecimiento & desarrollo , Sustancia Gris/crecimiento & desarrollo , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Conjuntos de Datos como Asunto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Adulto Joven
3.
Hum Brain Mapp ; 38(12): 5845-5858, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28876500

RESUMEN

Previous whole-brain functional connectivity studies achieved successful classifications of patients and healthy controls but only offered limited specificity as to affected brain systems. Here, we examined whether the connectivity patterns of functional systems affected in schizophrenia (SCZ), Parkinson's disease (PD), or normal aging equally translate into high classification accuracies for these conditions. We compared classification performance between pre-defined networks for each group and, for any given network, between groups. Separate support vector machine classifications of 86 SCZ patients, 80 PD patients, and 95 older adults relative to their matched healthy/young controls, respectively, were performed on functional connectivity in 12 task-based, meta-analytically defined networks using 25 replications of a nested 10-fold cross-validation scheme. Classification performance of the various networks clearly differed between conditions, as those networks that best classified one disease were usually non-informative for the other. For SCZ, but not PD, emotion-processing, empathy, and cognitive action control networks distinguished patients most accurately from controls. For PD, but not SCZ, networks subserving autobiographical or semantic memory, motor execution, and theory-of-mind cognition yielded the best classifications. In contrast, young-old classification was excellent based on all networks and outperformed both clinical classifications. Our pattern-classification approach captured associations between clinical and developmental conditions and functional network integrity with a higher level of specificity than did previous whole-brain analyses. Taken together, our results support resting-state connectivity as a marker of functional dysregulation in specific networks known to be affected by SCZ and PD, while suggesting that aging affects network integrity in a more global way. Hum Brain Mapp 38:5845-5858, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/fisiopatología , Enfermedad de Parkinson/fisiopatología , Esquizofrenia/fisiopatología , Adulto , Anciano , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Humanos , Imagen por Resonancia Magnética , Procesos Mentales/fisiología , Metaanálisis como Asunto , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Pruebas Neuropsicológicas , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/tratamiento farmacológico , Descanso , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/tratamiento farmacológico , Máquina de Vectores de Soporte , Adulto Joven
5.
Cortex ; 132: 441-459, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33065515

RESUMEN

Deterioration in working memory capacity (WMC) has been associated with normal aging, but it remains unknown how age affects the relationship between WMC and connectivity within functional brain networks. We therefore examined the predictability of WMC from fMRI-based resting-state functional connectivity (RSFC) within eight meta-analytically defined functional brain networks and the connectome in young and old adults using relevance vector machine in a robust cross-validation scheme. Particular brain networks have been associated with mental functions linked to WMC to a varying degree and are associated with age-related differences in performance. Comparing prediction performance between the young and old sample revealed age-specific effects: In young adults, we found a general unpredictability of WMC from RSFC in networks subserving WM, cognitive action control, vigilant attention, theory-of-mind cognition, and semantic memory, whereas in older adults each network significantly predicted WMC. Moreover, both WM-related and WM-unrelated networks were differently predictive in older adults with low versus high WMC. These results indicate that the within-network functional coupling during task-free states is specifically related to individual task performance in advanced age, suggesting neural-level reorganization. In particular, our findings support the notion of a decreased segregation of functional brain networks, deterioration of network integrity within different networks and/or compensation by reorganization as factors driving associations between individual WMC and within-network RSFC in older adults. Thus, using multivariate pattern regression provided novel insights into age-related brain reorganization by linking cognitive capacity to brain network integrity.


Asunto(s)
Conectoma , Memoria a Corto Plazo , Anciano , Encéfalo/diagnóstico por imagen , Cognición , Humanos , Imagen por Resonancia Magnética , Adulto Joven
6.
Brain Struct Funct ; 223(6): 2699-2719, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29572625

RESUMEN

Personality is associated with variation in all kinds of mental faculties, including affective, social, executive, and memory functioning. The intrinsic dynamics of neural networks underlying these mental functions are reflected in their functional connectivity at rest (RSFC). We, therefore, aimed to probe whether connectivity in functional networks allows predicting individual scores of the five-factor personality model and potential gender differences thereof. We assessed nine meta-analytically derived functional networks, representing social, affective, executive, and mnemonic systems. RSFC of all networks was computed in a sample of 210 males and 210 well-matched females and in a replication sample of 155 males and 155 females. Personality scores were predicted using relevance vector machine in both samples. Cross-validation prediction accuracy was defined as the correlation between true and predicted scores. RSFC within networks representing social, affective, mnemonic, and executive systems significantly predicted self-reported levels of Extraversion, Neuroticism, Agreeableness, and Openness. RSFC patterns of most networks, however, predicted personality traits only either in males or in females. Personality traits can be predicted by patterns of RSFC in specific functional brain networks, providing new insights into the neurobiology of personality. However, as most associations were gender-specific, RSFC-personality relations should not be considered independently of gender.


Asunto(s)
Encéfalo/fisiología , Red Nerviosa/fisiología , Personalidad/fisiología , Descanso , Adulto , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Conectoma , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Metaanálisis como Asunto , Red Nerviosa/diagnóstico por imagen , Oxígeno/sangre , Adulto Joven
7.
Brain Struct Funct ; 222(3): 1447-1468, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27550015

RESUMEN

Resting-state functional connectivity analysis has become a widely used method for the investigation of human brain connectivity and pathology. The measurement of neuronal activity by functional MRI, however, is impeded by various nuisance signals that reduce the stability of functional connectivity. Several methods exist to address this predicament, but little consensus has yet been reached on the most appropriate approach. Given the crucial importance of reliability for the development of clinical applications, we here investigated the effect of various confound removal approaches on the test-retest reliability of functional-connectivity estimates in two previously defined functional brain networks. Our results showed that gray matter masking improved the reliability of connectivity estimates, whereas denoising based on principal components analysis reduced it. We additionally observed that refraining from using any correction for global signals provided the best test-retest reliability, but failed to reproduce anti-correlations between what have been previously described as antagonistic networks. This suggests that improved reliability can come at the expense of potentially poorer biological validity. Consistent with this, we observed that reliability was proportional to the retained variance, which presumably included structured noise, such as reliable nuisance signals (for instance, noise induced by cardiac processes). We conclude that compromises are necessary between maximizing test-retest reliability and removing variance that may be attributable to non-neuronal sources.


Asunto(s)
Mapeo Encefálico , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Vías Nerviosas/diagnóstico por imagen , Descanso , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Movimiento/fisiología , Vías Nerviosas/fisiología , Oxígeno/sangre , Análisis de Componente Principal , Reproducibilidad de los Resultados , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA