Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(20): 206102, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38829060

RESUMEN

The liquid-to-solid phase transition is a complex process that is difficult to investigate experimentally with sufficient spatial and temporal resolution. A key aspect of the transition is the formation of a critical seed of the crystalline phase in a supercooled liquid, that is, a liquid in a metastable state below the melting temperature. This stochastic process is commonly described within the framework of classical nucleation theory, but accurate tests of the theory in atomic and molecular liquids are challenging. Here, we employ femtosecond x-ray diffraction from microscopic liquid jets to study crystal nucleation in supercooled liquids of the rare gases argon and krypton. Our results provide stringent limits to the validity of classical nucleation theory in atomic liquids, and offer the long-sought possibility of testing nonclassical extensions of the theory.

2.
Sci Adv ; 7(40): eabh0757, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34597137

RESUMEN

The imaging of active nanoparticles represents a milestone in decoding heterogeneous catalysts' dynamics. We report the facet-resolved, surface strain state of a single PtRh alloy nanoparticle on SrTiO3 determined by coherent x-ray diffraction imaging under catalytic reaction conditions. Density functional theory calculations allow us to correlate the facet surface strain state to its reaction environment­dependent chemical composition. We find that the initially Pt-terminated nanoparticle surface gets Rh-enriched under CO oxidation reaction conditions. The local composition is facet orientation dependent, and the Rh enrichment is nonreversible under subsequent CO reduction. Tracking facet-resolved strain and composition under operando conditions is crucial for a rational design of more efficient heterogeneous catalysts with tailored activity, selectivity, and lifetime.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA