Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
PLoS Pathog ; 13(10): e1006650, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29023600

RESUMEN

Influenza A virus (IAV) infection can be severe or even lethal in toddlers, the elderly and patients with certain medical conditions. Infection of apparently healthy individuals nonetheless accounts for many severe disease cases and deaths, suggesting that viruses with increased pathogenicity co-circulate with pandemic or epidemic viruses. Looking for potential virulence factors, we have identified a polymerase PA D529N mutation detected in a fatal IAV case, whose introduction into two different recombinant virus backbones, led to reduced defective viral genomes (DVGs) production. This mutation conferred low induction of antiviral response in infected cells and increased pathogenesis in mice. To analyze the association between low DVGs production and pathogenesis in humans, we performed a genomic analysis of viruses isolated from a cohort of previously healthy individuals who suffered highly severe IAV infection requiring admission to Intensive Care Unit and patients with fatal outcome who additionally showed underlying medical conditions. These viruses were compared with those isolated from a cohort of mild IAV patients. Viruses with fewer DVGs accumulation were observed in patients with highly severe/fatal outcome than in those with mild disease, suggesting that low DVGs abundance constitutes a new virulence pathogenic marker in humans.


Asunto(s)
Genoma Viral/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Humana/virología , Infecciones por Orthomyxoviridae/virología , Replicación Viral/genética , Adolescente , Adulto , Animales , Niño , Preescolar , Femenino , Humanos , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Masculino , Ratones , Persona de Mediana Edad , Infecciones por Orthomyxoviridae/genética , Virulencia/genética , Adulto Joven
2.
Cardiovasc Res ; 117(3): 876-889, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-32346730

RESUMEN

AIMS: Human influenza A virus (hIAV) infection is associated with important cardiovascular complications, although cardiac infection pathophysiology is poorly understood. We aimed to study the ability of hIAV of different pathogenicity to infect the mouse heart, and establish the relationship between the infective capacity and the associated in vivo, cellular and molecular alterations. METHODS AND RESULTS: We evaluated lung and heart viral titres in mice infected with either one of several hIAV strains inoculated intranasally. 3D reconstructions of infected cardiac tissue were used to identify viral proteins inside mouse cardiomyocytes, Purkinje cells, and cardiac vessels. Viral replication was measured in mouse cultured cardiomyocytes. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were used to confirm infection and study underlying molecular alterations associated with the in vivo electrophysiological phenotype. Pathogenic and attenuated hIAV strains infected and replicated in cardiomyocytes, Purkinje cells, and hiPSC-CMs. The infection was also present in cardiac endothelial cells. Remarkably, lung viral titres did not statistically correlate with viral titres in the mouse heart. The highly pathogenic human recombinant virus PAmut showed faster replication, higher level of inflammatory cytokines in cardiac tissue and higher viral titres in cardiac HL-1 mouse cells and hiPSC-CMs compared with PB2mut-attenuated virus. Correspondingly, cardiac conduction alterations were especially pronounced in PAmut-infected mice, associated with high mortality rates, compared with PB2mut-infected animals. Consistently, connexin43 and NaV1.5 expression decreased acutely in hiPSC-CMs infected with PAmut virus. YEM1L protease also decreased more rapidly and to lower levels in PAmut-infected hiPSC-CMs compared with PB2mut-infected cells, consistent with mitochondrial dysfunction. Human IAV infection did not increase myocardial fibrosis at 4-day post-infection, although PAmut-infected mice showed an early increase in mRNAs expression of lysyl oxidase. CONCLUSION: Human IAV can infect the heart and cardiac-specific conduction system, which may contribute to cardiac complications and premature death.


Asunto(s)
Alphainfluenzavirus/patogenicidad , Sistema de Conducción Cardíaco/virología , Miocarditis/virología , Infecciones por Orthomyxoviridae/virología , Animales , Conexinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Perros , Matriz Extracelular/metabolismo , Matriz Extracelular/virología , Femenino , Fibrosis , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Sistema de Conducción Cardíaco/metabolismo , Sistema de Conducción Cardíaco/patología , Interacciones Huésped-Patógeno , Humanos , Mediadores de Inflamación/metabolismo , Alphainfluenzavirus/genética , Alphainfluenzavirus/crecimiento & desarrollo , Cinética , Pulmón/virología , Células de Riñón Canino Madin Darby , Ratones Endogámicos BALB C , Ratones Transgénicos , Mutación , Miocarditis/metabolismo , Miocarditis/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/virología , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/patología , Ramos Subendocárdicos/metabolismo , Ramos Subendocárdicos/virología , Carga Viral , Virulencia , Replicación Viral , Proteína alfa-5 de Unión Comunicante
3.
Front Immunol ; 10: 132, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30787926

RESUMEN

Characterization of a pandemic 2009 H1N1 influenza virus isolated from a fatal case patient (F-IAV), showed the presence of three different mutations; potential determinants of its high pathogenicity that were located in the polymerase subunits (PB2 A221T and PA D529N) and the hemagglutinin (HA S110L). Recombinant viruses containing individually or in combination the polymerase mutations in the backbone of A/California/04/09 (CAL) showed that PA D529N was clearly involved in the increased pathogenicity of the F-IAV virus. Here, we have evaluated the contribution of HA S110L to F-IAV pathogenicity, through introduction of this point mutation in CAL recombinant virus (HA mut). The HA S110L protein has similar pH stability, comparable mobility, and entry properties both in human and mouse cultured cells that wild type HA. The change HA S110L leads to a non-significant trend to reduce the replication capacity of influenza virus in tissue culture, and HA mut is better neutralized than CAL virus by monoclonal and polyclonal antibodies against HA from CAL strain. In addition, recombinant viruses containing HA S110L alone or in combination with polymerase mutations considerably increased the LD50 in infected mice. Characterization of the lungs of HA mut infected animals showed reduced lung damage and inflammation compared with CAL infected mice. Accordingly, lower virus replication, decreased presence in bronchioli and parenchyma and lower leukocytes and epithelial infected cells were found in the lungs of HA mut-infected animals. Our results indicate that, mutation HA S110L constitutes a determinant of attenuation and suggest that its interaction with components of the respiratory tract mucus and lectins, that play an important role on influenza virus outcome, may constitute a physical barrier impeding the infection of the target cells, thus compromising the infection outcome.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/virología , Pulmón/patología , Mutación/genética , Infecciones por Orthomyxoviridae/virología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Inmunidad , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Pulmón/virología , Ratones , Virulencia , Internalización del Virus , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA