Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell ; 145(4): 607-21, 2011 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-21565617

RESUMEN

Class IIa histone deacetylases (HDACs) are signal-dependent modulators of transcription with established roles in muscle differentiation and neuronal survival. We show here that in liver, class IIa HDACs (HDAC4, 5, and 7) are phosphorylated and excluded from the nucleus by AMPK family kinases. In response to the fasting hormone glucagon, class IIa HDACs are rapidly dephosphorylated and translocated to the nucleus where they associate with the promoters of gluconeogenic enzymes such as G6Pase. In turn, HDAC4/5 recruit HDAC3, which results in the acute transcriptional induction of these genes via deacetylation and activation of FOXO family transcription factors. Loss of class IIa HDACs in murine liver results in inhibition of FOXO target genes and lowers blood glucose, resulting in increased glycogen storage. Finally, suppression of class IIa HDACs in mouse models of type 2 diabetes ameliorates hyperglycemia, suggesting that inhibitors of class I/II HDACs may be potential therapeutics for metabolic syndrome.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Glucosa/metabolismo , Histona Desacetilasas/metabolismo , Proteínas Quinasas Activadas por AMP , Acetilación , Animales , Núcleo Celular/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteína Forkhead Box O1 , Glucagón/metabolismo , Gluconeogénesis , Homeostasis , Ratones , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
2.
Mol Cell ; 30(2): 214-26, 2008 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-18439900

RESUMEN

AMPK is a highly conserved sensor of cellular energy status that is activated under conditions of low intracellular ATP. AMPK responds to energy stress by suppressing cell growth and biosynthetic processes, in part through its inhibition of the rapamycin-sensitive mTOR (mTORC1) pathway. AMPK phosphorylation of the TSC2 tumor suppressor contributes to suppression of mTORC1; however, TSC2-deficient cells remain responsive to energy stress. Using a proteomic and bioinformatics approach, we sought to identify additional substrates of AMPK that mediate its effects on growth control. We report here that AMPK directly phosphorylates the mTOR binding partner raptor on two well-conserved serine residues, and this phosphorylation induces 14-3-3 binding to raptor. The phosphorylation of raptor by AMPK is required for the inhibition of mTORC1 and cell-cycle arrest induced by energy stress. These findings uncover a conserved effector of AMPK that mediates its role as a metabolic checkpoint coordinating cell growth with energy status.


Asunto(s)
Complejos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Quinasas Activadas por AMP , Proteínas Adaptadoras Transductoras de Señales , Secuencias de Aminoácidos , Animales , Apoptosis , Ciclo Celular , Línea Celular , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos , Complejos Multienzimáticos/genética , Complejos Multiproteicos , Biblioteca de Péptidos , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteómica , Proteína Reguladora Asociada a mTOR , Serina/metabolismo , Especificidad por Sustrato , Serina-Treonina Quinasas TOR , Factores de Transcripción/antagonistas & inhibidores
3.
Proc Natl Acad Sci U S A ; 106(27): 11137-42, 2009 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-19541609

RESUMEN

Peutz-Jeghers syndrome (PJS) is a familial cancer disorder due to inherited loss of function mutations in the LKB1/ STK11 serine/threonine kinase. PJS patients develop gastrointestinal hamartomas with 100% penetrance often in the second decade of life, and demonstrate an increased predisposition toward the development of a number of additional malignancies. Among mitogenic signaling pathways, the mammalian-target of rapamycin complex 1 (mTORC1) pathway is hyperactivated in tissues and tumors derived from LKB1-deficient mice. Consistent with a central role for mTORC1 in these tumors, rapamycin as a single agent results in a dramatic suppression of preexisting GI polyps in LKB1+/- mice. However, the key targets of mTORC1 in LKB1-deficient tumors remain unknown. We demonstrate here that these polyps, and LKB1- and AMPK-deficient mouse embryonic fibroblasts, show dramatic up-regulation of the HIF-1alpha transcription factor and its downstream transcriptional targets in an rapamycin-suppressible manner. The HIF-1alpha targets hexokinase II and Glut1 are up-regulated in these polyps, and using FDG-PET, we demonstrate that LKB1+/- mice show increased glucose utilization in focal regions of their GI tract corresponding to these gastrointestinal hamartomas. Importantly, we demonstrate that polyps from human Peutz-Jeghers patients similarly exhibit up-regulated mTORC1 signaling, HIF-1alpha, and GLUT1 levels. Furthermore, like HIF-1alpha and its target genes, the FDG-PET signal in the GI tract of these mice is abolished by rapamycin treatment. These findings suggest a number of therapeutic modalities for the treatment and detection of hamartomas in PJS patients, and potential for the screening and treatment of the 30% of sporadic human lung cancers bearing LKB1 mutations.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Síndrome de Peutz-Jeghers/enzimología , Síndrome de Peutz-Jeghers/patología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Animales , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Glucosa/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos , Tomografía de Emisión de Positrones , Proteínas , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR , Factores de Transcripción/metabolismo , Carga Tumoral/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
4.
Cancer Cell ; 23(2): 143-58, 2013 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-23352126

RESUMEN

The LKB1 (also called STK11) tumor suppressor is mutationally inactivated in ∼20% of non-small cell lung cancers (NSCLC). LKB1 is the major upstream kinase activating the energy-sensing kinase AMPK, making LKB1-deficient cells unable to appropriately sense metabolic stress. We tested the therapeutic potential of metabolic drugs in NSCLC and identified phenformin, a mitochondrial inhibitor and analog of the diabetes therapeutic metformin, as selectively inducing apoptosis in LKB1-deficient NSCLC cells. Therapeutic trials in Kras-dependent mouse models of NSCLC revealed that tumors with Kras and Lkb1 mutations, but not those with Kras and p53 mutations, showed selective response to phenformin as a single agent, resulting in prolonged survival. This study suggests phenformin as a cancer metabolism-based therapeutic to selectively target LKB1-deficient tumors.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Fenformina/uso terapéutico , Proteínas Serina-Treonina Quinasas/fisiología , Proteína p53 Supresora de Tumor/fisiología , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Mutación/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/fisiología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
Science ; 331(6016): 456-61, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21205641

RESUMEN

Adenosine monophosphate-activated protein kinase (AMPK) is a conserved sensor of intracellular energy activated in response to low nutrient availability and environmental stress. In a screen for conserved substrates of AMPK, we identified ULK1 and ULK2, mammalian orthologs of the yeast protein kinase Atg1, which is required for autophagy. Genetic analysis of AMPK or ULK1 in mammalian liver and Caenorhabditis elegans revealed a requirement for these kinases in autophagy. In mammals, loss of AMPK or ULK1 resulted in aberrant accumulation of the autophagy adaptor p62 and defective mitophagy. Reconstitution of ULK1-deficient cells with a mutant ULK1 that cannot be phosphorylated by AMPK revealed that such phosphorylation is required for mitochondrial homeostasis and cell survival during starvation. These findings uncover a conserved biochemical mechanism coupling nutrient status with autophagy and cell survival.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Línea Celular , Línea Celular Tumoral , Supervivencia Celular , Metabolismo Energético , Hepatocitos/metabolismo , Humanos , Insulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Hígado/metabolismo , Metformina/farmacología , Ratones , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/ultraestructura , Fenformina/farmacología , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteína Sequestosoma-1 , Transducción de Señal , Factor de Transcripción TFIIH , Factores de Transcripción/metabolismo
6.
Science ; 326(5951): 437-40, 2009 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19833968

RESUMEN

Circadian clocks coordinate behavioral and physiological processes with daily light-dark cycles by driving rhythmic transcription of thousands of genes. Whereas the master clock in the brain is set by light, pacemakers in peripheral organs, such as the liver, are reset by food availability, although the setting, or "entrainment," mechanisms remain mysterious. Studying mouse fibroblasts, we demonstrated that the nutrient-responsive adenosine monophosphate-activated protein kinase (AMPK) phosphorylates and destabilizes the clock component cryptochrome 1 (CRY1). In mouse livers, AMPK activity and nuclear localization were rhythmic and inversely correlated with CRY1 nuclear protein abundance. Stimulation of AMPK destabilized cryptochromes and altered circadian rhythms, and mice in which the AMPK pathway was genetically disrupted showed alterations in peripheral clocks. Thus, phosphorylation by AMPK enables cryptochrome to transduce nutrient signals to circadian clocks in mammalian peripheral organs.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Ritmo Circadiano/fisiología , Flavoproteínas/metabolismo , Hígado/metabolismo , Factores de Transcripción ARNTL , Sustitución de Aminoácidos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular , Núcleo Celular/metabolismo , Células Cultivadas , Criptocromos , Medios de Cultivo , Flavoproteínas/genética , Alimentos , Glucosa/metabolismo , Glucosa/farmacología , Humanos , Ratones , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/metabolismo , Fosforilación , Regiones Promotoras Genéticas , Estabilidad Proteica , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleótidos/farmacología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA