Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Addict Biol ; 26(1): e12856, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31782234

RESUMEN

Worldwide consumption of opioids remains at historic levels. Preclinical studies report intergenerational effects on the endogenous opioid system of future progeny following preconception morphine exposure. Given the role of endogenous opioids in energy homeostasis, such effects could impact metabolism in the next generation. Thus, we examined diet-induced modifications in F1 male progeny of morphine-exposed female rats (MORF1). When fed a high fat-sugar diet (FSD) for 6 weeks, MORF1 males display features of emerging metabolic syndrome; they consume more food, gain more weight, and develop fasting-induced hyperglycemia and hyperinsulinemia. In the hypothalamus, proteins involved in energy homeostasis are modified and RNA sequencing revealed down-regulation of genes associated with neuronal plasticity, coupled with up-regulation of genes associated with immune, inflammatory, and metabolic processes that are specific to FSD-maintained MORF1 males. Thus, limited preconception morphine exposure in female rats increases the risk of metabolic syndrome/type 2 diabetes in the next generation.


Asunto(s)
Analgésicos Opioides/farmacología , Enfermedades Metabólicas/genética , Efectos Tardíos de la Exposición Prenatal/genética , Animales , Dieta Alta en Grasa , Femenino , Hipotálamo/metabolismo , Masculino , Morfina/farmacología , Embarazo , Ratas
2.
Front Neuroendocrinol ; 51: 1-13, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-28965857

RESUMEN

The past decade has seen a drastic rise in the number of infants exposed to opioids in utero. It is unclear what lasting effect this exposure may have on these children. Animal models of prenatal opioid exposure may provide insight into potential areas of vulnerability. The present review summarizes the findings across animal models of prenatal opioid exposure, including exposure to morphine, methadone, buprenorphine, and oxycodone. Details regarding the drug, doses, and duration of treatment, as well as key findings, are summarized in tables with associated references. Finally, significant gaps in the current preclinical literature and future directions are discussed.


Asunto(s)
Analgésicos Opioides/efectos adversos , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Modelos Animales de Enfermedad , Aprendizaje/efectos de los fármacos , Percepción del Dolor/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal , Receptores Opioides/efectos de los fármacos , Animales , Femenino , Embarazo , Efectos Tardíos de la Exposición Prenatal/inmunología , Efectos Tardíos de la Exposición Prenatal/fisiopatología
3.
Eur J Neurosci ; 49(9): 1115-1126, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30565761

RESUMEN

Our previous work indicated that male, but not female, offspring of cocaine-experienced sires display blunted cocaine self-administration. We extended this line of investigation to examine behavioral sensitization, a commonly used model of cocaine-induced behavioral and neuronal plasticity. Results indicated that male, but not female, offspring of cocaine-taking sires showed deficits in the ability of repeated systemic cocaine injections to induce augmented locomotor activity. The reduced cocaine sensitization phenotype in male progeny was associated with changes in histone post-translational modifications, epigenetic processes that regulate gene expression by controlling the accessibility of genes to transcriptional machinery, in the nucleus accumbens of first-generation male progeny. Thus, five histone post-translational modifications were significantly altered in the male progeny of cocaine-exposed sires. In contrast, self-administration of nicotine was unaltered in male and female offspring suggesting that the intergenerational effects of paternal cocaine taking may be drug-specific. Interestingly, the reduced sensitivity to cocaine previously observed in the male offspring of cocaine-taking sires dissipated in the grand-offspring. Both male and female grand-progeny of cocaine-exposed sires showed unaltered cocaine-induced behavioral sensitization and cocaine self-administration. Taken together, these findings indicate that paternal cocaine taking produces changes in multiple cocaine addiction-related behaviors in male progeny, which do not persist beyond the first generation of offspring. Moreover, the altered sensitivity to cocaine in first-generation male progeny of cocaine-sired male offspring was associated with epigenetic modifications in the nucleus accumbens, a nucleus that plays a critical role in cocaine-associated behavioral plasticity.


Asunto(s)
Conducta Animal/efectos de los fármacos , Cocaína/toxicidad , Inhibidores de Captación de Dopamina/toxicidad , Plasticidad Neuronal/efectos de los fármacos , Exposición Paterna/efectos adversos , Caracteres Sexuales , Animales , Femenino , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/etiología , Ratas , Ratas Sprague-Dawley
4.
Addict Biol ; 21(4): 802-810, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-25923597

RESUMEN

We previously showed that paternal cocaine exposure reduced the reinforcing efficacy of cocaine in male offspring. Here, we sought to determine whether paternal cocaine experience could also influence anxiety levels in offspring. Male rats were allowed to self-administer cocaine (controls received saline passively) for 60 days and then were bred with naïve females. Measures of anxiety and cocaine-induced anxiogenic effects were assessed in the adult offspring. Cocaine-sired male offspring exhibited increased anxiety-like behaviors, as measured using the novelty-induced hypophagia and defensive burying tasks, relative to saline-sired males. In contrast, sire cocaine experience had no effect on anxiety-like behaviors in female offspring. When challenged with an anxiogenic (but not anorectic) dose of cocaine (2.5 mg/kg, i.p.), anxiety-like behavior was enhanced in all animals to an equal degree regardless of sire drug experience. Since anxiety and depression are often co-morbid, we also assessed measures of depressive-like behavior. Sire cocaine experience had no effect on depression-like behaviors, as measured by the forced swim task, among male offspring. In a separate group of naïve littermates, select neuronal correlates of anxiety were measured. Male offspring of cocaine-experienced sires showed increased mRNA and protein expression of corticotropin-releasing factor receptor 2 in the hippocampus. Together, these results indicate that cocaine-experienced sires produce male progeny that have increased baseline anxiety, which is unaltered by subsequent cocaine exposure.


Asunto(s)
Ansiedad/inducido químicamente , Conducta Animal/efectos de los fármacos , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Exposición Paterna/estadística & datos numéricos , Animales , Cocaína/administración & dosificación , Modelos Animales de Enfermedad , Inhibidores de Captación de Dopamina/administración & dosificación , Padre , Femenino , Masculino , Embarazo , Ratas , Ratas Sprague-Dawley , Factores Sexuales
5.
Dev Psychobiol ; 58(6): 714-23, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26999300

RESUMEN

The present study measured postnatal ultrasonic vocalization (USV) and gene expression to examine potential changes in communication and/or attachment in the offspring of mothers exposed to morphine during adolescence. Offspring of morphine-exposed (Mor-F1), saline-exposed (Sal-F1), or non-handled control (Con-F1) female Sprague-Dawley rats were tested for separation-induced distress calls and maternal potentiation of distress calls during early postnatal development. We also examined relative expression of dopamine D2 receptor and mu opioid receptor (oprm1) mRNA in the nucleus accumbens and hypothalamus in these offspring, as their activity has been implicated in the regulation of postnatal USV in response to maternal separation. The findings indicate that adolescent experiences of future mothers, including their 10 daily saline or morphine injections, can result in significant region-specific differences in gene expression. In addition, these experiences resulted in fewer numbers of separation-induced distress calls produced by offspring. In contrast, augmented maternal potentiation was only observed in Mor-F1 offspring. © 2016 Wiley Periodicals, Inc. Dev Psychobiol 58:714-723, 2016.


Asunto(s)
Peso Corporal/fisiología , Expresión Génica/fisiología , Exposición Materna , Morfina/farmacología , Narcóticos/farmacología , Vocalización Animal/fisiología , Factores de Edad , Animales , Peso Corporal/efectos de los fármacos , Femenino , Expresión Génica/efectos de los fármacos , Manejo Psicológico , Hipotálamo/metabolismo , Masculino , Morfina/administración & dosificación , Narcóticos/administración & dosificación , Núcleo Accumbens/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D2/metabolismo , Receptores Opioides mu/metabolismo , Vocalización Animal/efectos de los fármacos
6.
J Neurosci ; 33(36): 14446-54, 2013 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-24005296

RESUMEN

Accumbal deep brain stimulation (DBS) is a promising therapeutic modality for the treatment of addiction. Here, we demonstrate that DBS in the nucleus accumbens shell, but not the core, attenuates cocaine priming-induced reinstatement of drug seeking, an animal model of relapse, in male Sprague Dawley rats. Next, we compared DBS of the shell with pharmacological inactivation. Results indicated that inactivation using reagents that influenced (lidocaine) or spared (GABA receptor agonists) fibers of passage blocked cocaine reinstatement when administered into the core but not the shell. It seems unlikely, therefore, that intrashell DBS influences cocaine reinstatement by inactivating this nucleus or the fibers coursing through it. To examine potential circuit-wide changes, c-Fos immunohistochemistry was used to examine neuronal activation following DBS of the nucleus accumbens shell. Intrashell DBS increased c-Fos induction at the site of stimulation as well as in the infralimbic cortex, but had no effect on the dorsal striatum, prelimbic cortex, or ventral pallidum. Recent evidence indicates that accumbens DBS antidromically stimulates axon terminals, which ultimately activates GABAergic interneurons in cortical areas that send afferents to the shell. To test this hypothesis, GABA receptor agonists (baclofen/muscimol) were microinjected into the anterior cingulate, and prelimbic or infralimbic cortices before cocaine reinstatement. Pharmacological inactivation of all three medial prefrontal cortical subregions attenuated the reinstatement of cocaine seeking. These results are consistent with DBS of the accumbens shell attenuating cocaine reinstatement via local activation and/or activation of GABAergic interneurons in the medial prefrontal cortex via antidromic stimulation of cortico-accumbal afferents.


Asunto(s)
Cocaína/farmacología , Estimulación Encefálica Profunda , Comportamiento de Búsqueda de Drogas/fisiología , Núcleo Accumbens/fisiología , Animales , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Agonistas del GABA/farmacología , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Masculino , Núcleo Accumbens/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
7.
J Neurosci ; 33(35): 13978-88, 13988a, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23986235

RESUMEN

Serotonin (5-HT) modulates neural responses to socioaffective cues and can bias approach or avoidance behavioral decisions, yet the cellular mechanisms underlying its contribution to the regulation of social experiences remain poorly understood. We hypothesized that GABAergic neurons in the dorsal raphe nucleus (DRN) may participate in socioaffective regulation by controlling serotonergic tone during social interaction. We tested this hypothesis using whole-cell recording techniques in genetically identified DRN GABA and 5-HT neurons in mice exposed to social defeat, a model that induces long-lasting avoidance behaviors in a subset of mice responsive to serotonergic antidepressants. Our results revealed that social defeat engaged DRN GABA neurons and drove GABAergic sensitization that strengthened inhibition of 5-HT neurons in mice that were susceptible, but not resilient to social defeat. Furthermore, optogenetic silencing of DRN GABA neurons disinhibited neighboring 5-HT neurons and prevented the acquisition of social avoidance in mice exposed to a social threat, but did not affect a previously acquired avoidance phenotype. We provide the first characterization of GABA neurons in the DRN that monosynaptically inhibit 5-HT neurons and reveal their key role in neuroplastic processes underlying the development of social avoidance.


Asunto(s)
Agresión , Reacción de Prevención , Neuronas GABAérgicas/fisiología , Núcleos del Rafe/citología , Neuronas Serotoninérgicas/fisiología , Animales , Potenciales Postsinápticos Excitadores , Potenciales Postsinápticos Inhibidores , Masculino , Ratones , Ratones Endogámicos C57BL , Optogenética , Fenotipo , Núcleos del Rafe/fisiología
8.
Behav Pharmacol ; 25(2): 173-81, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24561499

RESUMEN

Prescription opiate use by adolescent girls has increased significantly in the past decade. Preclinical studies using rats report alterations in morphine sensitivity in the adult offspring of adolescent morphine-exposed females (MOR-F1) when compared with the offspring of adolescent saline-exposed females (SAL-F1). To begin to elucidate the development of these next generation modifications, the present study examined the effects of acute morphine administration on sedation and corticosterone secretion in prepubescent SAL-F1 and MOR-F1 male and female rats. In addition, alterations in proopiomelanocortin (POMC) gene expression in the arcuate nucleus, as well as in tyrosine hydroxylase (TH) and µ-opioid receptor (OPRM1) gene expressions in the ventral tegmental area, were analyzed using quantitative PCR, to determine whether differential regulation of these genes was correlated with the observed behavioral and/or endocrine effects. Increased morphine-induced sedation, coupled with an attenuation of morphine-induced corticosterone secretion, was observed in MOR-F1 males. Significant alterations in both POMC and OPRM1 gene expressions were also observed in MOR-F1 males, with no change in TH mRNA expression. Overall, these data suggest that the transgenerational effects of adolescent morphine exposure can be discerned before pubertal development and are more pronounced in males, and suggest dysregulation of the hypothalamic-pituitary-adrenal axis in the offspring of adolescent morphine-exposed females.


Asunto(s)
Exposición Materna , Morfina/farmacología , Narcóticos/farmacología , Maduración Sexual/efectos de los fármacos , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/crecimiento & desarrollo , Núcleo Arqueado del Hipotálamo/fisiología , Corticosterona/sangre , Corticosterona/metabolismo , Relación Dosis-Respuesta a Droga , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Femenino , Expresión Génica/efectos de los fármacos , Expresión Génica/fisiología , Masculino , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Proopiomelanocortina/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Opioides mu/metabolismo , Caracteres Sexuales , Maduración Sexual/fisiología , Tirosina 3-Monooxigenasa/metabolismo , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/crecimiento & desarrollo , Área Tegmental Ventral/fisiología
9.
Neuropharmacology ; 254: 109972, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38710443

RESUMEN

Opioid use disorder (OUD) is a chronic condition associated with long-lasting molecular and behavioral changes. Animals with prolonged access to opioids develop behaviors similar to human OUD. Identifying associated molecular changes can provide insight to underpinnings that lead to or maintain OUD. In pilot studies, we identified several miRNA targets that are altered by the administration of oxycodone. We selected mir182 for follow up as it was recently shown to be dysregulated in plasma of men administered oxycodone. In addition, mir182 is increased in reward-related brain regions of male rats following exposure to various addictive substances. The present study utilizes a long-access oxycodone self-administration paradigm to examine changes in mir182 and its mRNA targets associated with neuroplasticity, which may be involved in the maintenance of OUD-like phenotype in rats. Male rats were trained to self-administer oxycodone (0.1 mg/kg/infusion, i. v.) for 6 h daily sessions for 12 days. Each animal had a yoked saline control that received matched saline infusions. Animals were then tested on a progressive ratio schedule to measure motivation to obtain a single infusion of oxycodone. Drug seeking was measured following 28 days of forced abstinence using a 90-min cued/test. RTqPCR was utilized to measure mir182 and mRNA targets related to neuroplasticity (wnt3, plppr4, pou3f3, tle4, cacna2d, and bdnf) from the nucleus accumbens. Data revealed that animals responded on a continuum for oxycodone. When divided into two groups termed high- and low responders, animals diverged during self-administration acquisition and maintained differences in behavior and gene expression throughout the study. mir182 was upregulated in the nucleus accumbens of both high and low responders and negatively correlated with tle4, which showed a strong negative correlation with reinstatement behavior. mRNA target levels were correlated with behaviors associated with increased severity of OUD behavior in male rats.


Asunto(s)
MicroARNs , Plasticidad Neuronal , Oxicodona , Autoadministración , Animales , Masculino , Oxicodona/administración & dosificación , Oxicodona/farmacología , Plasticidad Neuronal/efectos de los fármacos , Ratas , MicroARNs/metabolismo , MicroARNs/genética , Individualidad , Ratas Sprague-Dawley , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/farmacología , Trastornos Relacionados con Opioides/genética , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética
10.
Psychopharmacology (Berl) ; 241(7): 1435-1446, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38503843

RESUMEN

RATIONALE: Transgenerational effects of preconception morphine exposure in female rats have been reported which suggest that epigenetic modifications triggered by female opioid exposure, even when that exposure ends several weeks prior to pregnancy, has significant ramifications for their future offspring. OBJECTIVE: The current study compares two mouse strains with well-established genetic variation in their response to mu opioid receptor agonists, C57BL/6J (BL6) and 129S1/svlmJ (129) to determine whether genetic background modifies the impact of preconception opioid exposure. METHODS: Adolescent females from both strains were injected daily with morphine for a total of 10 days using an increasing dosing regimen with controls receiving saline. Several weeks after their final injection, aged-matched BL6 and 129 morphine (Mor-F0) or saline (Sal-F0) females were mated with drug naïve males to generate Mor-F1 and Sal-F1 offspring, respectively. As adults, F1 mice were made morphine dependent using thrice daily morphine injections for 4 days. On day 5, mice were administered either saline or morphine followed 3 h later by naloxone. Behavioral and physiological signs of withdrawal were then measured. RESULTS: Regardless of strain or sex, morphine-dependent Mor-F1 mice had significantly lower levels of withdrawal-induced corticosterone but significantly higher glucose levels when compared to Sal-F1 controls. In contrast, both strain- and preconception opioid exposure effects on physical signs of morphine dependence were observed.


Asunto(s)
Analgésicos Opioides , Ratones Endogámicos C57BL , Dependencia de Morfina , Morfina , Receptores Opioides mu , Síndrome de Abstinencia a Sustancias , Animales , Femenino , Morfina/farmacología , Morfina/administración & dosificación , Síndrome de Abstinencia a Sustancias/metabolismo , Ratones , Masculino , Dependencia de Morfina/metabolismo , Embarazo , Analgésicos Opioides/farmacología , Analgésicos Opioides/administración & dosificación , Receptores Opioides mu/metabolismo , Receptores Opioides mu/genética , Ratones de la Cepa 129 , Naloxona/farmacología , Naloxona/administración & dosificación , Especificidad de la Especie , Antagonistas de Narcóticos/farmacología , Antagonistas de Narcóticos/administración & dosificación , Corticosterona/sangre , Efectos Tardíos de la Exposición Prenatal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA