Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell ; 186(18): 3793-3809.e26, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37562401

RESUMEN

Hepatocytes, the major metabolic hub of the body, execute functions that are human-specific, altered in human disease, and currently thought to be regulated through endocrine and cell-autonomous mechanisms. Here, we show that key metabolic functions of human hepatocytes are controlled by non-parenchymal cells (NPCs) in their microenvironment. We developed mice bearing human hepatic tissue composed of human hepatocytes and NPCs, including human immune, endothelial, and stellate cells. Humanized livers reproduce human liver architecture, perform vital human-specific metabolic/homeostatic processes, and model human pathologies, including fibrosis and non-alcoholic fatty liver disease (NAFLD). Leveraging species mismatch and lipidomics, we demonstrate that human NPCs control metabolic functions of human hepatocytes in a paracrine manner. Mechanistically, we uncover a species-specific interaction whereby WNT2 secreted by sinusoidal endothelial cells controls cholesterol uptake and bile acid conjugation in hepatocytes through receptor FZD5. These results reveal the essential microenvironmental regulation of hepatic metabolism and its human-specific aspects.


Asunto(s)
Células Endoteliales , Hígado , Animales , Humanos , Ratones , Células Endoteliales/metabolismo , Hepatocitos/metabolismo , Macrófagos del Hígado/metabolismo , Hígado/citología , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fibrosis/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(52): e2312666120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38127985

RESUMEN

AGPAT2 (1-acyl-sn-glycerol-3-phosphate-acyltransferase-2) converts lysophosphatidic acid (LPA) into phosphatidic acid (PA), and mutations of the AGPAT2 gene cause the most common form of congenital generalized lipodystrophy which leads to steatohepatitis. The underlying mechanism by which AGPAT2 deficiency leads to lipodystrophy and steatohepatitis has not been elucidated. We addressed this question using an antisense oligonucleotide (ASO) to knockdown expression of Agpat2 in the liver and white adipose tissue (WAT) of adult male Sprague-Dawley rats. Agpat2 ASO treatment induced lipodystrophy and inflammation in WAT and the liver, which was associated with increased LPA content in both tissues, whereas PA content was unchanged. We found that a controlled-release mitochondrial protonophore (CRMP) prevented LPA accumulation and inflammation in WAT whereas an ASO against glycerol-3-phosphate acyltransferase, mitochondrial (Gpam) prevented LPA content and inflammation in the liver in Agpat2 ASO-treated rats. In addition, we show that overnutrition, due to high sucrose feeding, resulted in increased hepatic LPA content and increased activated macrophage content which were both abrogated with Gpam ASO treatment. Taken together, these data identify LPA as a key mediator of liver and WAT inflammation and lipodystrophy due to AGPAT2 deficiency as well as liver inflammation due to overnutrition and identify LPA as a potential therapeutic target to ameliorate these conditions.


Asunto(s)
Hígado Graso , Lipodistrofia , Hipernutrición , Masculino , Ratas , Animales , Aciltransferasas/metabolismo , Glicerol , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/metabolismo , Ratas Sprague-Dawley , Lipodistrofia/genética , Tejido Adiposo Blanco/metabolismo , Ácidos Fosfatidicos , Inflamación , Fosfatos
3.
Proc Natl Acad Sci U S A ; 119(10): e2122287119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35238637

RESUMEN

SignificanceMetformin is the most commonly prescribed drug for the treatment of type 2 diabetes mellitus, yet the mechanism by which it lowers plasma glucose concentrations has remained elusive. Most studies to date have attributed metformin's glucose-lowering effects to inhibition of complex I activity. Contrary to this hypothesis, we show that inhibition of complex I activity in vitro and in vivo does not reduce plasma glucose concentrations or inhibit hepatic gluconeogenesis. We go on to show that metformin, and the related guanides/biguanides, phenformin and galegine, inhibit complex IV activity at clinically relevant concentrations, which, in turn, results in inhibition of glycerol-3-phosphate dehydrogenase activity, increased cytosolic redox, and selective inhibition of glycerol-derived hepatic gluconeogenesis both in vitro and in vivo.


Asunto(s)
Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Gluconeogénesis , Guanidinas/farmacología , Hipoglucemiantes/farmacología , Metformina/farmacología , Fenformina/farmacología , Animales , Glucosa/metabolismo , Glicerol/metabolismo , Glicerolfosfato Deshidrogenasa/antagonistas & inhibidores , Hígado/efectos de los fármacos , Hígado/metabolismo , Oxidación-Reducción , Piridinas/farmacología
4.
Proc Natl Acad Sci U S A ; 117(51): 32584-32593, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33293421

RESUMEN

Adiponectin has emerged as a potential therapy for type 2 diabetes mellitus, but the molecular mechanism by which adiponectin reverses insulin resistance remains unclear. Two weeks of globular adiponectin (gAcrp30) treatment reduced fasting plasma glucose, triglyceride (TAG), and insulin concentrations and reversed whole-body insulin resistance, which could be attributed to both improved insulin-mediated suppression of endogenous glucose production and increased insulin-stimulated glucose uptake in muscle and adipose tissues. These improvements in liver and muscle sensitivity were associated with ∼50% reductions in liver and muscle TAG and plasma membrane (PM)-associated diacylglycerol (DAG) content and occurred independent of reductions in total ceramide content. Reductions of PM DAG content in liver and skeletal muscle were associated with reduced PKCε translocation in liver and reduced PKCθ and PKCε translocation in skeletal muscle resulting in increased insulin-stimulated insulin receptor tyrosine1162 phosphorylation, IRS-1/IRS-2-associated PI3-kinase activity, and Akt-serine phosphorylation. Both gAcrp30 and full-length adiponectin (Acrp30) treatment increased eNOS/AMPK activation in muscle and muscle fatty acid oxidation. gAcrp30 and Acrp30 infusions also increased TAG uptake in epididymal white adipose tissue (eWAT), which could be attributed to increased lipoprotein lipase (LPL) activity. These data suggest that adiponectin and adiponectin-related molecules reverse lipid-induced liver and muscle insulin resistance by reducing ectopic lipid storage in these organs, resulting in decreased plasma membrane sn-1,2-DAG-induced nPKC activity and increased insulin signaling. Adiponectin mediates these effects by both promoting the storage of TAG in eWAT likely through stimulation of LPL as well as by stimulation of AMPK in muscle resulting in increased muscle fat oxidation.


Asunto(s)
Adiponectina/farmacología , Dieta Alta en Grasa/efectos adversos , Resistencia a la Insulina/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Diglicéridos/metabolismo , Insulina/metabolismo , Metabolismo de los Lípidos , Lipoproteína Lipasa/metabolismo , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología
5.
Proc Natl Acad Sci U S A ; 117(14): 8166-8176, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32188779

RESUMEN

Multiple insulin-regulated enzymes participate in hepatic glycogen synthesis, and the rate-controlling step responsible for insulin stimulation of glycogen synthesis is unknown. We demonstrate that glucokinase (GCK)-mediated glucose phosphorylation is the rate-controlling step in insulin-stimulated hepatic glycogen synthesis in vivo, by use of the somatostatin pancreatic clamp technique using [13C6]glucose with metabolic control analysis (MCA) in three rat models: 1) regular chow (RC)-fed male rats (control), 2) high fat diet (HFD)-fed rats, and 3) RC-fed rats with portal vein glucose delivery at a glucose infusion rate matched to the control. During hyperinsulinemia, hyperglycemia dose-dependently increased hepatic glycogen synthesis. At similar levels of hyperinsulinemia and hyperglycemia, HFD-fed rats exhibited a decrease and portal delivery rats exhibited an increase in hepatic glycogen synthesis via the direct pathway compared with controls. However, the strong correlation between liver glucose-6-phosphate concentration and net hepatic glycogen synthetic rate was nearly identical in these three groups, suggesting that the main difference between models is the activation of GCK. MCA yielded a high control coefficient for GCK in all three groups. We confirmed these findings in studies of hepatic GCK knockdown using an antisense oligonucleotide. Reduced liver glycogen synthesis in lipid-induced hepatic insulin resistance and increased glycogen synthesis during portal glucose infusion were explained by concordant changes in translocation of GCK. Taken together, these data indicate that the rate of insulin-stimulated hepatic glycogen synthesis is controlled chiefly through GCK translocation.


Asunto(s)
Hígado Graso/patología , Glucoquinasa/metabolismo , Glucosa/metabolismo , Glucógeno Hepático/biosíntesis , Hígado/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Hígado Graso/etiología , Técnicas de Silenciamiento del Gen , Glucoquinasa/genética , Glucosa/administración & dosificación , Glucosa-6-Fosfato/análisis , Glucosa-6-Fosfato/metabolismo , Humanos , Hiperglucemia/etiología , Hiperglucemia/patología , Hiperinsulinismo/etiología , Hiperinsulinismo/patología , Insulina/metabolismo , Resistencia a la Insulina , Hígado/patología , Masculino , Metabolómica , Fosforilación , Ratas
6.
J Lipid Res ; 61(12): 1565-1576, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32907986

RESUMEN

Microsomal triglyceride transfer protein (MTTP) deficiency results in a syndrome of hypolipidemia and accelerated NAFLD. Animal models of decreased hepatic MTTP activity have revealed an unexplained dissociation between hepatic steatosis and hepatic insulin resistance. Here, we performed comprehensive metabolic phenotyping of liver-specific MTTP knockout (L-Mttp-/-) mice and age-weight matched wild-type control mice. Young (10-12-week-old) L-Mttp-/- mice exhibited hepatic steatosis and increased DAG content; however, the increase in hepatic DAG content was partitioned to the lipid droplet and was not increased in the plasma membrane. Young L-Mttp-/- mice also manifested normal hepatic insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamps, no PKCε activation, and normal hepatic insulin signaling from the insulin receptor through AKT Ser/Thr kinase. In contrast, aged (10-month-old) L-Mttp-/- mice exhibited glucose intolerance and hepatic insulin resistance along with an increase in hepatic plasma membrane sn-1,2-DAG content and PKCε activation. Treatment with a functionally liver-targeted mitochondrial uncoupler protected the aged L-Mttp-/- mice against the development of hepatic steatosis, increased plasma membrane sn-1,2-DAG content, PKCε activation, and hepatic insulin resistance. Furthermore, increased hepatic insulin sensitivity in the aged controlled-release mitochondrial protonophore-treated L-Mttp-/- mice was not associated with any reductions in hepatic ceramide content. Taken together, these data demonstrate that differences in the intracellular compartmentation of sn-1,2-DAGs in the lipid droplet versus plasma membrane explains the dissociation of NAFLD/lipid-induced hepatic insulin resistance in young L-Mttp-/- mice as well as the development of lipid-induced hepatic insulin resistance in aged L-Mttp-/- mice.


Asunto(s)
Proteínas Portadoras/genética , Membrana Celular/metabolismo , Diglicéridos/metabolismo , Técnicas de Inactivación de Genes , Resistencia a la Insulina , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología
8.
FASEB J ; 33(7): 8174-8185, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30922125

RESUMEN

The connection between adipose glucocorticoid action and whole-body metabolism is incompletely understood. Thus, we generated adipose tissue-specific glucocorticoid receptor-knockout (Ad-GcR-/-) mice to explore potential mechanisms. Ad-GcR-/- mice had a lower concentration of fasting plasma nonesterified fatty acids and less hepatic steatosis. This was associated with increased protein kinase B phosphorylation and increased hepatic glycogen synthesis after an oral glucose challenge. High-fat diet (HFD)-fed Ad-GcR-/- mice were protected against the development of hepatic steatosis and diacylglycerol-PKCε-induced impairments in hepatic insulin signaling. Under hyperinsulinemic-euglycemic conditions, hepatic insulin response was ∼10-fold higher in HFD-fed Ad-GcR-/- mice. Insulin-mediated suppression of adipose lipolysis was improved by 40% in Ad-GcR-/- mice. Adipose triglyceride lipase expression was decreased and insulin-mediated perilipin dephosphorylation was increased in Ad-GcR-/- mice. In metabolic cages, food intake decreased by 3 kcal/kg per hour in Ad-GcR-/- mice. Therefore, physiologic adipose glucocorticoid action appears to drive hepatic lipid accumulation during stressors such as fasting. The resultant hepatic insulin resistance prevents hepatic glycogen synthesis, preserving glucose for glucose-dependent organs. Absence of adipose glucocorticoid action attenuates HFD-induced hepatic insulin resistance; potential explanations for reduction in hepatic steatosis include reductions in adipose lipolysis and food intake.-Abulizi, A., Camporez, J.-P., Jurczak, M. J., Høyer, K. F., Zhang, D., Cline, G. W., Samuel, V. T., Shulman, G. I., Vatner, D. F. Adipose glucocorticoid action influences whole-body metabolism via modulation of hepatic insulin action.


Asunto(s)
Tejido Adiposo/metabolismo , Glucocorticoides/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , Lipólisis , Hígado/metabolismo , Animales , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/farmacología , Glucocorticoides/genética , Insulina/genética , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/metabolismo , Ratones , Ratones Noqueados , Receptores de Glucocorticoides/deficiencia , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
9.
Hepatology ; 68(6): 2197-2211, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29790582

RESUMEN

Pharmacologic inhibition of acetyl-CoA carboxylase (ACC) enzymes, ACC1 and ACC2, offers an attractive therapeutic strategy for nonalcoholic fatty liver disease (NAFLD) through simultaneous inhibition of fatty acid synthesis and stimulation of fatty acid oxidation. However, the effects of ACC inhibition on hepatic mitochondrial oxidation, anaplerosis, and ketogenesis in vivo are unknown. Here, we evaluated the effect of a liver-directed allosteric inhibitor of ACC1 and ACC2 (Compound 1) on these parameters, as well as glucose and lipid metabolism, in control and diet-induced rodent models of NAFLD. Oral administration of Compound 1 preferentially inhibited ACC enzymatic activity in the liver, reduced hepatic malonyl-CoA levels, and enhanced hepatic ketogenesis by 50%. Furthermore, administration for 6 days to high-fructose-fed rats resulted in a 20% reduction in hepatic de novo lipogenesis. Importantly, long-term treatment (21 days) significantly reduced high-fat sucrose diet-induced hepatic steatosis, protein kinase C epsilon activation, and hepatic insulin resistance. ACCi treatment was associated with a significant increase in plasma triglycerides (approximately 30% to 130%, depending on the length of fasting). ACCi-mediated hypertriglyceridemia could be attributed to approximately a 15% increase in hepatic very low-density lipoprotein production and approximately a 20% reduction in triglyceride clearance by lipoprotein lipase (P ≤ 0.05). At the molecular level, these changes were associated with increases in liver X receptor/sterol response element-binding protein-1 and decreases in peroxisome proliferator-activated receptor-α target activation and could be reversed with fenofibrate co-treatment in a high-fat diet mouse model. Conclusion: Collectively, these studies warrant further investigation into the therapeutic utility of liver-directed ACC inhibition for the treatment of NAFLD and hepatic insulin resistance.


Asunto(s)
Acetil-CoA Carboxilasa/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Triglicéridos/sangre , Acetil-CoA Carboxilasa/antagonistas & inhibidores , Animales , Ácidos Grasos no Esterificados/sangre , Cetonas/metabolismo , Lipogénesis , Lipoproteínas VLDL/sangre , Masculino , Análisis de Flujos Metabólicos , PPAR alfa/agonistas , Ratas Sprague-Dawley , Receptores Citoplasmáticos y Nucleares/metabolismo
10.
Biochem J ; 475(6): 1063-1074, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29483297

RESUMEN

Exposure to the toxins methylene cyclopropyl acetic acid (MCPA) and methylene cyclopropyl glycine (MCPG) of unripe ackee and litchi fruit can lead to hypoglycemia and death; however, the molecular mechanisms by which MCPA and MCPG cause hypoglycemia have not been established in vivo To determine the in vivo mechanisms of action of these toxins, we infused them into conscious rodents and assessed rates of hepatic gluconeogenesis and ketogenesis, hepatic acyl-CoA and hepatic acetyl-CoA content, and hepatocellular energy charge. MCPG suppressed rates of hepatic ß-oxidation as reflected by reductions in hepatic ketogenesis, reducing both short- and medium-chain hepatic acyl-CoA concentrations. Hepatic acetyl-CoA content decreased, and hepatic glucose production was inhibited. MCPA also suppressed ß-oxidation of short-chain acyl-CoAs, rapidly inhibiting hepatic ketogenesis and hepatic glucose production, depleting hepatic acetyl-CoA content and ATP content, while increasing other short-chain acyl-CoAs. Utilizing a recently developed positional isotopomer NMR tracer analysis method, we demonstrated that MCPA-induced reductions in hepatic acetyl-CoA content were associated with a marked reduction of hepatic pyruvate carboxylase (PC) flux. Taken together, these data reveal the in vivo mechanisms of action of MCPA and MCPG: the hypoglycemia associated with ingestion of these toxins can be ascribed mostly to MCPA- or MCPG-induced reductions in hepatic PC flux due to inhibition of ß-oxidation of short-chain acyl-CoAs by MCPA or inhibition of both short- and medium-chain acyl-CoAs by MCPG with resultant reductions in hepatic acetyl-CoA content, with an additional contribution to hypoglycemia through reduced hepatic ATP stores by MCPA.


Asunto(s)
Ciclopropanos , Glicina/análogos & derivados , Hipoglucemia/inducido químicamente , Animales , Gluconeogénesis/efectos de los fármacos , Glucosa/metabolismo , Hipoglucemia/patología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
11.
Diabetologia ; 61(6): 1435-1446, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29497783

RESUMEN

AIMS/HYPOTHESIS: Targeting regulators of adipose tissue lipoprotein lipase could enhance adipose lipid clearance, prevent ectopic lipid accumulation and consequently ameliorate insulin resistance and type 2 diabetes. Angiopoietin-like 8 (ANGPTL8) is an insulin-regulated lipoprotein lipase inhibitor strongly expressed in murine adipose tissue. However, Angptl8 knockout mice do not have improved insulin resistance. We hypothesised that pharmacological inhibition, using a second-generation antisense oligonucleotide (ASO) against Angptl8 in adult high-fat-fed rodents, would prevent ectopic lipid accumulation and insulin resistance by promoting adipose lipid uptake. METHODS: ANGPTL8 expression was assessed by quantitative PCR in omental adipose tissue of bariatric surgery patients. High-fat-fed Sprague Dawley rats and C57BL/6 mice were treated with ASO against Angptl8 and insulin sensitivity was assessed by hyperinsulinaemic-euglycaemic clamps in rats and glucose tolerance tests in mice. Factors mediating lipid-induced hepatic insulin resistance were assessed, including lipid content, protein kinase Cε (PKCε) activation and insulin-stimulated Akt phosphorylation. Rat adipose lipid uptake was assessed by mixed meal tolerance tests. Murine energy balance was assessed by indirect calorimetry. RESULTS: Omental fat ANGPTL8 mRNA expression is higher in obese individuals with fatty liver and insulin resistance compared with BMI-matched insulin-sensitive individuals. Angptl8 ASO prevented hepatic steatosis, PKCε activation and hepatic insulin resistance in high-fat-fed rats. Postprandial triacylglycerol uptake in white adipose tissue was increased in Angptl8 ASO-treated rats. Angptl8 ASO protected high-fat-fed mice from glucose intolerance. Although there was no change in net energy balance, Angptl8 ASO increased fat mass in high-fat-fed mice. CONCLUSIONS/INTERPRETATION: Disinhibition of adipose tissue lipoprotein lipase is a novel therapeutic modality to enhance adipose lipid uptake and treat non-alcoholic fatty liver disease and insulin resistance. In line with this, adipose ANGPTL8 is a candidate therapeutic target for these conditions.


Asunto(s)
Tejido Adiposo/metabolismo , Proteínas Similares a la Angiopoyetina/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Oligonucleótidos Antisentido/genética , Hormonas Peptídicas/genética , Proteína 8 Similar a la Angiopoyetina , Animales , Composición Corporal , Calorimetría Indirecta , Dieta Alta en Grasa , Prueba de Tolerancia a la Glucosa , Resistencia a la Insulina , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley
12.
Proc Natl Acad Sci U S A ; 112(4): 1143-8, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25564660

RESUMEN

A central paradox in type 2 diabetes is the apparent selective nature of hepatic insulin resistance--wherein insulin fails to suppress hepatic glucose production yet continues to stimulate lipogenesis, resulting in hyperglycemia, hyperlipidemia, and hepatic steatosis. Although efforts to explain this have focused on finding a branch point in insulin signaling where hepatic glucose and lipid metabolism diverge, we hypothesized that hepatic triglyceride synthesis could be driven by substrate, independent of changes in hepatic insulin signaling. We tested this hypothesis in rats by infusing [U-(13)C] palmitate to measure rates of fatty acid esterification into hepatic triglyceride while varying plasma fatty acid and insulin concentrations independently. These experiments were performed in normal rats, high fat-fed insulin-resistant rats, and insulin receptor 2'-O-methoxyethyl chimeric antisense oligonucleotide-treated rats. Rates of fatty acid esterification into hepatic triglyceride were found to be dependent on plasma fatty acid infusion rates, independent of changes in plasma insulin concentrations and independent of hepatocellular insulin signaling. Taken together, these results obviate a paradox of selective insulin resistance, because the major source of hepatic lipid synthesis, esterification of preformed fatty acids, is primarily dependent on substrate delivery and largely independent of hepatic insulin action.


Asunto(s)
Resistencia a la Insulina , Insulina/metabolismo , Hígado/metabolismo , Ácido Palmítico/metabolismo , Transducción de Señal , Triglicéridos/biosíntesis , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Ácido Palmítico/farmacología , Ratas , Receptor de Insulina/metabolismo
14.
Am J Physiol Endocrinol Metab ; 307(9): E773-83, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25159329

RESUMEN

The steroid receptor coactivator 1 (SRC1) regulates key metabolic pathways, including glucose homeostasis. SRC1(-/-) mice have decreased hepatic expression of gluconeogenic enzymes and a reduction in the rate of endogenous glucose production (EGP). We sought to determine whether decreasing hepatic and adipose SRC1 expression in normal adult rats would alter glucose homeostasis and insulin action. Regular chow-fed and high-fat-fed male Sprage-Dawley rats were treated with an antisense oligonucleotide (ASO) against SRC1 or a control ASO for 4 wk, followed by metabolic assessments. SRC1 ASO did not alter basal EGP or expression of gluconeogenic enzymes. Instead, SRC1 ASO increased insulin-stimulated whole body glucose disposal by ~30%, which was attributable largely to an increase in insulin-stimulated muscle glucose uptake. This was associated with an approximately sevenfold increase in adipose expression of lipocalin-type prostaglandin D2 synthase, a previously reported regulator of insulin sensitivity, and an approximately 70% increase in plasma PGD2 concentration. Muscle insulin signaling, AMPK activation, and tissue perfusion were unchanged. Although GLUT4 content was unchanged, SRC1 ASO increased the cleavage of tether-containing UBX domain for GLUT4, a regulator of GLUT4 translocation. These studies point to a novel role of adipose SRC1 as a regulator of insulin-stimulated muscle glucose uptake.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Intolerancia a la Glucosa/tratamiento farmacológico , Resistencia a la Insulina , Músculo Esquelético/efectos de los fármacos , Coactivador 1 de Receptor Nuclear/antagonistas & inhibidores , Oligodesoxirribonucleótidos Antisentido/uso terapéutico , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/enzimología , Tejido Adiposo/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Intolerancia a la Glucosa/etiología , Intolerancia a la Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/agonistas , Transportador de Glucosa de Tipo 4/química , Transportador de Glucosa de Tipo 4/metabolismo , Péptidos y Proteínas de Señalización Intracelular/agonistas , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Lipocalinas/agonistas , Lipocalinas/genética , Lipocalinas/metabolismo , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Coactivador 1 de Receptor Nuclear/genética , Coactivador 1 de Receptor Nuclear/metabolismo , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Prostaglandina D2/sangre , Prostaglandina D2/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteolisis/efectos de los fármacos , Ratas Sprague-Dawley
15.
Hepatology ; 57(5): 1763-72, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23175050

RESUMEN

UNLABELLED: Genome-wide array studies have associated the patatin-like phospholipase domain-containing 3 (PNPLA3) gene polymorphisms with hepatic steatosis. However, it is unclear whether PNPLA3 functions as a lipase or a lipogenic enzyme and whether PNPLA3 is involved in the pathogenesis of hepatic insulin resistance. To address these questions we treated high-fat-fed rats with specific antisense oligonucleotides to decrease hepatic and adipose pnpla3 expression. Reducing pnpla3 expression prevented hepatic steatosis, which could be attributed to decreased fatty acid esterification measured by the incorporation of [U-(13) C]-palmitate into hepatic triglyceride. While the precursors for phosphatidic acid (PA) (long-chain fatty acyl-CoAs and lysophosphatidic acid [LPA]) were not decreased, we did observe an ∼20% reduction in the hepatic PA content, ∼35% reduction in the PA/LPA ratio, and ∼60%-70% reduction in transacylation activity at the level of acyl-CoA:1-acylglycerol-sn-3-phosphate acyltransferase. These changes were associated with an ∼50% reduction in hepatic diacylglycerol (DAG) content, an ∼80% reduction in hepatic protein kinase Cε activation, and increased hepatic insulin sensitivity, as reflected by a 2-fold greater suppression of endogenous glucose production during the hyperinsulinemic-euglycemic clamp. Finally, in humans, hepatic PNPLA3 messenger RNA (mRNA) expression was strongly correlated with hepatic triglyceride and DAG content, supporting a potential lipogenic role of PNPLA3 in humans. CONCLUSION: PNPLA3 may function primarily in a lipogenic capacity and inhibition of PNPLA3 may be a novel therapeutic approach for treatment of nonalcoholic fatty liver disease-associated hepatic insulin resistance.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Hígado Graso/inducido químicamente , Hígado Graso/fisiopatología , Resistencia a la Insulina/fisiología , Lípidos/efectos adversos , Proteínas de la Membrana/fisiología , Fosfolipasas A2/fisiología , Animales , Biopsia , Diglicéridos/metabolismo , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Proteínas de la Membrana/efectos de los fármacos , Proteínas de la Membrana/genética , Oligonucleótidos Antisentido/farmacología , Fosfolipasas A2/efectos de los fármacos , Fosfolipasas A2/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Triglicéridos/metabolismo
16.
Am J Physiol Endocrinol Metab ; 305(1): E89-100, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23651850

RESUMEN

Liver-specific thyroid hormone receptor-ß (TRß)-specific agonists are potent lipid-lowering drugs that also hold promise for treating nonalcoholic fatty liver disease and hepatic insulin resistance. We investigated the effect of two TRß agonists (GC-1 and KB-2115) in high-fat-fed male Sprague-Dawley rats treated for 10 days. GC-1 treatment reduced hepatic triglyceride content by 75%, but the rats developed fasting hyperglycemia and hyperinsulinemia, attributable to increased endogenous glucose production (EGP) and diminished hepatic insulin sensitivity. GC-1 also increased white adipose tissue lipolysis; the resulting increase in glycerol flux may have contributed to the increase in EGP. KB-2115, a more TRß- and liver-specific thyromimetic, also prevented hepatic steatosis but did not induce fasting hyperglycemia, increase basal EGP rate, or diminish hepatic insulin sensitivity. Surprisingly, insulin-stimulated peripheral glucose disposal was diminished because of a decrease in insulin-stimulated skeletal muscle glucose uptake. Skeletal muscle insulin signaling was unaffected. Instead, KB-2115 treatment was associated with a decrease in GLUT4 protein content. Thus, although both GC-1 and KB-2115 potently treat hepatic steatosis in fat-fed rats, they each worsen insulin action via specific and discrete mechanisms. The development of future TRß agonists must consider the potential adverse effects on insulin sensitivity.


Asunto(s)
Acetatos/farmacología , Anilidas/farmacología , Hígado Graso/metabolismo , Hígado Graso/prevención & control , Resistencia a la Insulina/fisiología , Fenoles/farmacología , Receptores beta de Hormona Tiroidea/agonistas , Animales , Grasas de la Dieta/farmacología , Hígado Graso/tratamiento farmacológico , Expresión Génica/efectos de los fármacos , Gluconeogénesis/efectos de los fármacos , Gluconeogénesis/fisiología , Transportador de Glucosa de Tipo 4/metabolismo , Hiperglucemia/inducido químicamente , Hiperglucemia/metabolismo , Hiperinsulinismo/inducido químicamente , Hiperinsulinismo/metabolismo , Masculino , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Enfermedad del Hígado Graso no Alcohólico , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Receptores beta de Hormona Tiroidea/metabolismo , Triglicéridos/metabolismo
17.
Mol Metab ; 64: 101574, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35970449

RESUMEN

OBJECTIVE: Maternal obesity increases the incidence of excess adiposity in newborns, resulting in lifelong diabetes risk. Elevated intrauterine fetal adiposity has been attributed to maternal hyperglycemia; however, this hypothesis does not account for the increased adiposity seen in newborns of mothers with obesity who have euglycemia. We aimed to explore the placental response to maternal hyperinsulinemia and the effect of insulin-like growth factor 2 (IGF-2) in promoting fetal adiposity by increasing storage and availability of nutrients to the fetus. METHODS: We used placental villous explants and isolated trophoblasts from normal weight and obese women to assess the effect of insulin and IGF-2 on triglyceride content and insulin receptor signaling. Stable isotope tracer methods were used ex vivo to determine effect of hormone treatment on de novo lipogenesis (DNL), fatty acid uptake, fatty acid oxidation, and esterification in the placenta. RESULTS: Here we show that placentae from euglycemic women with normal weight and obesity both have abundant insulin receptor. Placental depth and triglyceride were greater in women with obesity compared with normal weight women. In syncytialized placental trophoblasts and villous explants, insulin and IGF-2 activate insulin receptor, induce expression of lipogenic transcription factor SREBP-1 (sterol regulatory element-binding protein 1), and stimulate triglyceride accumulation. We demonstrate elevated triglyceride is attributable to increased esterification of fatty acids, without contribution from DNL and without an acceleration of fatty acid uptake. CONCLUSIONS: Our work reveals that obesity-driven aberrations in maternal metabolism, such as hyperinsulinemia, alter placental metabolism in euglycemic conditions, and may explain the higher prevalence of excess adiposity in the newborns of obese women.


Asunto(s)
Hiperinsulinismo , Obesidad Materna , Adiposidad , Ácidos Grasos/metabolismo , Femenino , Feto/metabolismo , Humanos , Hiperinsulinismo/metabolismo , Recién Nacido , Insulina/metabolismo , Factor II del Crecimiento Similar a la Insulina/metabolismo , Masculino , Obesidad/metabolismo , Placenta/metabolismo , Embarazo , Receptor de Insulina/metabolismo , Triglicéridos/metabolismo
18.
Diabetes Care ; 44(2): 489-498, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33293347

RESUMEN

OBJECTIVE: Both glucose and triglyceride production are increased in type 2 diabetes and nonalcoholic fatty liver disease (NAFLD). For decades, the leading hypothesis to explain these paradoxical observations has been selective hepatic insulin resistance wherein insulin drives de novo lipogenesis (DNL) while failing to suppress glucose production. Here, we aimed to test this hypothesis in humans. RESEARCH DESIGN AND METHODS: We recruited obese subjects who met criteria for bariatric surgery with (n = 16) or without (n = 15) NAFLD and assessed 1) insulin-mediated regulation of hepatic and peripheral glucose metabolism using hyperinsulinemic-euglycemic clamps with [6,6-2H2]glucose, 2) fasting and carbohydrate-driven hepatic DNL using deuterated water (2H2O), and 3) hepatocellular insulin signaling in liver biopsy samples collected during bariatric surgery. RESULTS: Compared with subjects without NAFLD, those with NAFLD demonstrated impaired insulin-mediated suppression of glucose production and attenuated-not increased-glucose-stimulated/high-insulin lipogenesis. Fructose-stimulated/low-insulin lipogenesis was intact. Hepatocellular insulin signaling, assessed for the first time in humans, exhibited a proximal block in insulin-resistant subjects: Signaling was attenuated from the level of the insulin receptor through both glucose and lipogenesis pathways. The carbohydrate-regulated lipogenic transcription factor ChREBP was increased in subjects with NAFLD. CONCLUSIONS: Acute increases in lipogenesis in humans with NAFLD are not explained by altered molecular regulation of lipogenesis through a paradoxical increase in lipogenic insulin action; rather, increases in lipogenic substrate availability may be the key.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Insulina/metabolismo , Lipogénesis , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo
19.
Commun Biol ; 4(1): 826, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34211098

RESUMEN

Genome-wide association studies have identified SLC16A13 as a novel susceptibility gene for type 2 diabetes. The SLC16A13 gene encodes SLC16A13/MCT13, a member of the solute carrier 16 family of monocarboxylate transporters. Despite its potential importance to diabetes development, the physiological function of SLC16A13 is unknown. Here, we validate Slc16a13 as a lactate transporter expressed at the plasma membrane and report on the effect of Slc16a13 deletion in a mouse model. We show that Slc16a13 increases mitochondrial respiration in the liver, leading to reduced hepatic lipid accumulation and increased hepatic insulin sensitivity in high-fat diet fed Slc16a13 knockout mice. We propose a mechanism for improved hepatic insulin sensitivity in the context of Slc16a13 deficiency in which reduced intrahepatocellular lactate availability drives increased AMPK activation and increased mitochondrial respiration, while reducing hepatic lipid content. Slc16a13 deficiency thereby attenuates hepatic diacylglycerol-PKCε mediated insulin resistance in obese mice. Together, these data suggest that SLC16A13 is a potential target for the treatment of type 2 diabetes and non-alcoholic fatty liver disease.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad/genética , Resistencia a la Insulina/genética , Metabolismo de los Lípidos/genética , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Expresión Génica , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Transportadores de Ácidos Monocarboxílicos/deficiencia , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/etiología , Obesidad/genética , Obesidad/metabolismo , Consumo de Oxígeno/genética
20.
Nat Metab ; 3(3): 378-393, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33686286

RESUMEN

TUG tethering proteins bind and sequester GLUT4 glucose transporters intracellularly, and insulin stimulates TUG cleavage to translocate GLUT4 to the cell surface and increase glucose uptake. This effect of insulin is independent of phosphatidylinositol 3-kinase, and its physiological relevance remains uncertain. Here we show that this TUG cleavage pathway regulates both insulin-stimulated glucose uptake in muscle and organism-level energy expenditure. Using mice with muscle-specific Tug (Aspscr1)-knockout and muscle-specific constitutive TUG cleavage, we show that, after GLUT4 release, the TUG C-terminal cleavage product enters the nucleus, binds peroxisome proliferator-activated receptor (PPAR)γ and its coactivator PGC-1α and regulates gene expression to promote lipid oxidation and thermogenesis. This pathway acts in muscle and adipose cells to upregulate sarcolipin and uncoupling protein 1 (UCP1), respectively. The PPARγ2 Pro12Ala polymorphism, which reduces diabetes risk, enhances TUG binding. The ATE1 arginyltransferase, which mediates a specific protein degradation pathway and controls thermogenesis, regulates the stability of the TUG product. We conclude that insulin-stimulated TUG cleavage coordinates whole-body energy expenditure with glucose uptake, that this mechanism might contribute to the thermic effect of food and that its attenuation could promote obesity.


Asunto(s)
Metabolismo Energético , Glucosa/metabolismo , Insulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células 3T3-L1 , Aminoaciltransferasas/metabolismo , Animales , Ratones , Ratones Noqueados , Oxidación-Reducción , PPAR gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Proteolisis , Termogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA