Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Cell Biol ; 22(20): 7134-46, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12242291

RESUMEN

Protein synthesis is regulated by the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) in response to different environmental stresses. One member of the eIF2alpha kinase family, heme-regulated inhibitor kinase (HRI), is activated under heme-deficient conditions and blocks protein synthesis, principally globin, in mammalian erythroid cells. We identified two HRI-related kinases from Schizosaccharomyces pombe which have full-length homology with mammalian HRI. The two HRI-related kinases, named Hri1p and Hri2p, exhibit autokinase and kinase activity specific for Ser-51 of eIF2alpha, and both activities were inhibited in vitro by hemin, as previously described for mammalian HRI. Overexpression of Hri1p, Hri2p, or the human eIF2alpha kinase, double-stranded-RNA-dependent protein kinase (PKR), impeded growth of S. pombe due to elevated phosphorylation of eIF2alpha. Cells from strains with deletions of the hri1(+) and hri2(+) genes, individually or in combination, exhibited a reduced growth rate when exposed to heat shock or to arsenic compounds. Measurements of in vivo phosphorylation of eIF2alpha suggest that Hri1p and Hri2p differentially phosphorylate eIF2alpha in response to these stress conditions. These results demonstrate that HRI-related enzymes are not unique to vertebrates and suggest that these eIF2alpha kinases are important participants in diverse stress response pathways in some lower eukaryotes.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , eIF-2 Quinasa/metabolismo , Secuencia de Aminoácidos , Arseniatos/farmacología , Secuencia de Bases , División Celular , ADN de Hongos , Proteínas Fúngicas/genética , Respuesta al Choque Térmico , Humanos , Datos de Secuencia Molecular , Fosforilación , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Homología de Secuencia de Aminoácido , Serina/metabolismo , Especificidad por Sustrato , eIF-2 Quinasa/genética
2.
Mol Cell Biol ; 22(19): 6681-8, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12215525

RESUMEN

The GCN2 eIF2alpha kinase is essential for activation of the general amino acid control pathway in yeast when one or more amino acids become limiting for growth. GCN2's function in mammals is unknown, but must differ, since mammals, unlike yeast, can synthesize only half of the standard 20 amino acids. To investigate the function of mammalian GCN2, we have generated a Gcn2(-/-) knockout strain of mice. Gcn2(-/-) mice are viable, fertile, and exhibit no phenotypic abnormalities under standard growth conditions. However, prenatal and neonatal mortalities are significantly increased in Gcn2(-/-) mice whose mothers were reared on leucine-, tryptophan-, or glycine-deficient diets during gestation. Leucine deprivation produced the most pronounced effect, with a 63% reduction in the expected number of viable neonatal mice. Cultured embryonic stem cells derived from Gcn2(-/-) mice failed to show the normal induction of eIF2alpha phosphorylation in cells deprived of leucine. To assess the biochemical effects of the loss of GCN2 in the whole animal, liver perfusion experiments were conducted. Histidine limitation in the presence of histidinol induced a twofold increase in the phosphorylation of eIF2alpha and a concomitant reduction in eIF2B activity in perfused livers from wild-type mice, but no changes in livers from Gcn2(-/-) mice.


Asunto(s)
Adaptación Fisiológica/fisiología , Factor 2 Eucariótico de Iniciación/metabolismo , Glicina/deficiencia , Leucina/deficiencia , Proteínas Quinasas/deficiencia , Triptófano/deficiencia , Animales , Animales Recién Nacidos , Células Cultivadas , Factor 2B Eucariótico de Iniciación/metabolismo , Femenino , Viabilidad Fetal/genética , Alimentos Formulados , Regulación de la Expresión Génica , Marcación de Gen , Heterocigoto , Homocigoto , Hígado/metabolismo , Ratones , Ratones Noqueados , Fosforilación , Embarazo , Efectos Tardíos de la Exposición Prenatal , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Subunidades de Proteína , Células Madre/citología , Células Madre/metabolismo
3.
Biochem J ; 400(1): 153-62, 2006 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-16875466

RESUMEN

The BCKDH (branched-chain alpha-keto acid dehydrogenase complex) catalyses the rate-limiting step in the oxidation of BCAAs (branched-chain amino acids). Activity of the complex is regulated by a specific kinase, BDK (BCKDH kinase), which causes inactivation, and a phosphatase, BDP (BCKDH phosphatase), which causes activation. In the present study, the effect of the disruption of the BDK gene on growth and development of mice was investigated. BCKDH activity was much greater in most tissues of BDK-/- mice. This occurred in part because the E1 component of the complex cannot be phosphorylated due to the absence of BDK and also because greater than normal amounts of the E1 component were present in tissues of BDK-/- mice. Lack of control of BCKDH activity resulted in markedly lower blood and tissue levels of the BCAAs in BDK-/- mice. At 12 weeks of age, BDK-/- mice were 15% smaller than wild-type mice and their fur lacked normal lustre. Brain, muscle and adipose tissue weights were reduced, whereas weights of the liver and kidney were greater. Neurological abnormalities were apparent by hind limb flexion throughout life and epileptic seizures after 6-7 months of age. Inhibition of protein synthesis in the brain due to hyperphosphorylation of eIF2alpha (eukaryotic translation initiation factor 2alpha) might contribute to the neurological abnormalities seen in BDK-/- mice. BDK-/- mice show significant improvement in growth and appearance when fed a high protein diet, suggesting that higher amounts of dietary BCAA can partially compensate for increased oxidation in BDK-/- mice. Disruption of the BDK gene establishes that regulation of BCKDH by phosphorylation is critically important for the regulation of oxidative disposal of BCAAs. The phenotype of the BDK-/- mice demonstrates the importance of tight regulation of oxidative disposal of BCAAs for normal growth and neurological function.


Asunto(s)
Trastornos del Crecimiento/genética , Enfermedades del Sistema Nervioso/genética , Proteínas Quinasas/metabolismo , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Animales , Encéfalo/enzimología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Diafragma/metabolismo , Epilepsia/enzimología , Epilepsia/genética , Femenino , Trastornos del Crecimiento/enzimología , Trastornos del Crecimiento/metabolismo , Corazón/crecimiento & desarrollo , Immunoblotting , Técnicas In Vitro , Riñón/enzimología , Riñón/crecimiento & desarrollo , Riñón/metabolismo , Hígado/enzimología , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculos/enzimología , Músculos/metabolismo , Músculos/fisiología , Miocardio/enzimología , Miocardio/metabolismo , Enfermedades del Sistema Nervioso/enzimología , Enfermedades del Sistema Nervioso/metabolismo , Tamaño de los Órganos , Proteínas Quinasas/deficiencia , Proteínas Quinasas/genética , Valina/metabolismo
4.
Biochem J ; 397(1): 187-94, 2006 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-16492139

RESUMEN

In response to different cellular stresses, a family of protein kinases phosphorylates eIF2alpha (alpha subunit of eukaryotic initiation factor-2), contributing to regulation of both general and genespecific translation proposed to alleviate cellular injury or alternatively induce apoptosis. Recently, we reported eIF2alpha(P) (phosphorylated eIF2alpha) in the brain during SE (status epilepticus) induced by pilocarpine in mice, an animal model of TLE (temporal lobe epilepsy) [Carnevalli, Pereira, Longo, Jaqueta, Avedissian, Mello and Castilho (2004) Neurosci. Lett. 357, 191-194]. We show in the present study that one eIF2alpha kinase family member, PKR (double-stranded-RNA-dependent protein kinase), is activated in the cortex and hippocampus at 30 min of SE, reflecting the levels of eIF2alpha(P) in these areas. In PKR-deficient animals subjected to SE, eIF2alpha phosphorylation was clearly evident coincident with activation of a secondary eIF2alpha kinase, PEK/PERK (pancreatic eIF2alpha kinase/RNA-dependent-protein-kinase-like endoplasmic reticulum kinase), denoting a compensatory mechanism between the two kinases. The extent of eIF2alpha phosphorylation correlated with the inhibition of protein synthesis in the brain, as determined from polysome profiles. We also found that C57BL/6 mice, which enter SE upon pilocarpine administration but are more resistant to seizure-induced neuronal degeneration, showed very low levels of eIF2alpha(P) and no inhibition of protein synthesis during SE. These results taken together suggest that PKR-mediated phosphorylation of eIF2alpha contributes to inhibition of protein synthesis in the brain during SE and that sustained high levels of eIF2alpha phosphorylation may facilitate ensuing cell death in the most affected areas of the brain in TLE.


Asunto(s)
Encéfalo/metabolismo , Muerte Celular , Biosíntesis de Proteínas , Estado Epiléptico/metabolismo , eIF-2 Quinasa/metabolismo , Animales , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Epilepsia del Lóbulo Temporal/fisiopatología , Hipocampo/metabolismo , Hipocampo/patología , Ratones , Ratones Endogámicos C57BL , Mióticos , Fosforilación , Pilocarpina
5.
Diabetes ; 53(7): 1876-83, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15220213

RESUMEN

Wolcott-Rallison syndrome (WRS) is a rare autosomal-recessive disorder characterized by the association of permanent neonatal or early-infancy insulin-dependent diabetes, multiple epiphyseal dysplasia and growth retardation, and other variable multisystemic clinical manifestations. Based on genetic studies of two inbred families, we previously identified the gene responsible for this disorder as EIF2AK3, the pancreatic eukaryotic initiation factor 2alpha (eIF2alpha) kinase. Here, we have studied 12 families with WRS, totalling 18 cases. With the exception of one case, all patients carried EIF2AK3 mutations resulting in truncated or missense versions of the protein. Exclusion of EIF2AK3 mutations in the one patient case was confirmed by both linkage and sequence data. The activities of missense versions of EIF2AK3 were characterized in vivo and in vitro and found to have a complete lack of activity in four mutant proteins and residual kinase activity in one. Remarkably, the onset of diabetes was relatively late (30 months) in the patient expressing the partially defective EIF2AK3 mutant and in the patient with no EIF2AK3 involvement (18 months) compared with other patients (<6 months). The patient with no EIF2AK3 involvement did not have any of the other variable clinical manifestations associated with WRS, which supports the idea that the genetic heterogeneity between this variant form of WRS and EIF2AK3 WRS correlates with some clinical heterogeneity.


Asunto(s)
Diabetes Mellitus Tipo 1/genética , Enanismo/genética , Heterogeneidad Genética , Mutación , Osteocondrodisplasias/genética , eIF-2 Quinasa/genética , Adolescente , Adulto , Niño , Preescolar , Consanguinidad , Genes Recesivos , Humanos , Lactante , Mutación Missense , Linaje , Síndrome
6.
Biochem J ; 375(Pt 3): 673-80, 2003 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-12908872

RESUMEN

Diacylglycerol kinases (DAGKs) catalyse ATP-dependent phosphorylation of sn-1,2-diacylglycerol that arises during stimulated phosphatidylinositol turnover. DAGKa is activated in vitro by Ca2+ and by acidic phospholipids. The regulatory region of DAGKa includes an N-terminal RVH motif and EF hands that mediate Ca2+-dependent activation. DAGKa also contains tandem C1 protein kinase C homology domains. We utilized yeast, Saccharomyces cerevisiae, which lacks an endogenous DAGK, to express DAGKa and to determine the enzymic activities of different mutant forms of pig DAGKa in vitro. Six aspartate residues conserved in all DAGKs were individually examined by site-directed mutagenesis. Five of these aspartate residues reside in conserved blocks that correspond to sequences in the catalytic site of phosphofructokinases. Mutation of D434 (Asp434) or D650 abolished all DAGKa activity, whereas substitution of one among D465, D497, D529 and D697 decreased the activity to 6% or less of that for wild-type DAGKa. Roles of homologous residues in phosphofructokinases suggested that the N-terminal half of the DAGK catalytic domain binds Mg-ATP and the C-terminal half binds diacylglycerol. A DAGKa mutant with its entire regulatory region deleted showed a much decreased activity that was not activated by Ca2+, but still exhibited PS (phosphatidylserine)-dependent activation. Moreover, mutations of aspartate residues at the catalytic domain had differential effects on activation by Ca2+ and PS. These results indicate that Ca2+ and PS stimulate DAGKa via distinct mechanisms.


Asunto(s)
Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/metabolismo , Secuencia de Aminoácidos , Animales , Ácido Aspártico/genética , Sitios de Unión/genética , Células COS , Calcio/farmacología , Dominio Catalítico/genética , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Fosfatidilserinas/farmacología , Saccharomyces cerevisiae/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Porcinos
7.
Proc Natl Acad Sci U S A ; 101(31): 11269-74, 2004 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-15277680

RESUMEN

During cellular stresses, phosphorylation of eukaryotic initiation factor-2 (eIF2) elicits gene expression designed to ameliorate the underlying cellular disturbance. Central to this stress response is the transcriptional regulator activating transcription factor, ATF4. Here we describe the mechanism regulating ATF4 expression involving the differential contribution of two upstream ORFs (uORFs) in the 5' leader of the mouse ATF4 mRNA. The 5' proximal uORF1 is a positive-acting element that facilitates ribosome scanning and reinitiation at downstream coding regions in the ATF4 mRNA. When eIF2-GTP is abundant in nonstressed cells, ribosomes scanning downstream of uORF1 reinitiate at the next coding region, uORF2, an inhibitory element that blocks ATF4 expression. During stress conditions, phosphorylation of eIF2 and the accompanying reduction in the levels of eIF2-GTP increase the time required for the scanning ribosomes to become competent to reinitiate translation. This delayed reinitiation allows for ribosomes to scan through the inhibitory uORF2 and instead reinitiate at the ATF4-coding region. Increased expression of ATF4 would contribute to the expression of genes involved in remediation of cellular stress damage. These results suggest that the mechanism of translation reinitiation involving uORFs is conserved from yeast to mammals.


Asunto(s)
Fibroblastos/fisiología , Biosíntesis de Proteínas/genética , Transactivadores/genética , Factor de Transcripción Activador 4 , Animales , Secuencia de Bases , Células Cultivadas , Proteínas de Unión al ADN/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Fibroblastos/citología , Ratones , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta/genética , Fosforilación , Proteínas Quinasas/genética , ARN Mensajero/química , ARN Mensajero/genética , Ribosomas/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Levaduras/genética
8.
J Biol Chem ; 277(21): 18728-35, 2002 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-11907036

RESUMEN

Phosphorylation of eukaryotic initiation factor-2 (eIF2) by pancreatic eIF2 kinase (PEK), induces a program of translational expression in response to accumulation of malfolded protein in the endoplasmic reticulum (ER). This study addresses the mechanisms activating PEK, also designated PERK or EIF2AK3. We describe the characterization of two regions in the ER luminal portion of the transmembrane PEK that carry out distinct functions in the regulation of this eIF2 kinase. The first region mediates oligomerization between PEK polypeptides, and deletion of this portion of PEK blocked induction of eIF2 kinase activity. The second characterized region of PEK facilitates interaction with ER chaperones. In the absence of stress, PEK associates with ER chaperones GRP78 (BiP) and GRP94, and this binding is released in response to ER stress. ER luminal sequences flanking the transmembrane domain are required for GRP78 interaction, and deletion of this portion of PEK led to its activation even in the absence of ER stress. These results suggest that this ER chaperone serves as a repressor of PEK activity, and release of ER chaperones from PEK when misfolded proteins accumulate in the ER induces gene expression required to enhance the protein folding capacity of the ER.


Asunto(s)
Retículo Endoplásmico/metabolismo , Chaperonas Moleculares/metabolismo , eIF-2 Quinasa/metabolismo , Línea Celular , Dimerización , Chaperón BiP del Retículo Endoplásmico , Activación Enzimática , Humanos , Chaperonas Moleculares/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA