Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Physiol ; 594(3): 567-93, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26515697

RESUMEN

KEY POINTS: The mechanism of therapeutic efficacy of flecainide for catecholaminergic polymorphic ventricular tachycardia (CPVT) is unclear. Model predictions suggest that Na(+) channel effects are insufficient to explain flecainide efficacy in CPVT. This study represents a first step toward predicting therapeutic mechanisms of drug efficacy in the setting of CPVT and then using these mechanisms to guide modelling and simulation to predict alternative drug therapies. Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia syndrome characterized by fatal ventricular arrhythmias in structurally normal hearts during ß-adrenergic stimulation. Current treatment strategies include ß-blockade, flecainide and ICD implementation--none of which is fully effective and each comes with associated risk. Recently, flecainide has gained considerable interest in CPVT treatment, but its mechanism of action for therapeutic efficacy is unclear. In this study, we performed in silico mutagenesis to construct a CPVT model and then used a computational modelling and simulation approach to make predictions of drug mechanisms and efficacy in the setting of CPVT. Experiments were carried out to validate model results. Our simulations revealed that Na(+) channel effects are insufficient to explain flecainide efficacy in CPVT. The pure Na(+) channel blocker lidocaine and the antianginal ranolazine were additionally tested and also found to be ineffective. When we tested lower dose combination therapy with flecainide, ß-blockade and CaMKII inhibition, our model predicted superior therapeutic efficacy than with flecainide monotherapy. Simulations indicate a polytherapeutic approach may mitigate side-effects and proarrhythmic potential plaguing CPVT pharmacological management today. Importantly, our prediction of a novel polytherapy for CPVT was confirmed experimentally. Our simulations suggest that flecainide therapeutic efficacy in CPVT is unlikely to derive from primary interactions with the Na(+) channel, and benefit may be gained from an alternative multi-drug regimen.


Asunto(s)
Antiarrítmicos/farmacología , Flecainida/farmacología , Modelos Cardiovasculares , Taquicardia Ventricular/fisiopatología , Animales , Animales Modificados Genéticamente , Antiarrítmicos/uso terapéutico , Electrocardiografía , Flecainida/uso terapéutico , Ratones , Conejos , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Canales de Sodio/fisiología , Taquicardia Ventricular/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA