RESUMEN
Breast cancer (BCa) is a heterogeneous disease with different histological, prognostic and clinical aspects. Therefore, the need for identification of novel biomarkers for diagnosis, prognosis and monitoring of disease, as well as treatment outcome prediction remains at the forefront of research. The search for circulating elements, obtainable by simple peripheral blood withdrawal, which may serve as possible biomarkers, constitutes still a challenge. In the present study, we have evaluated the expression of 6 circulating miRNAs, (miR-16, miR-21, miR-23α, miR-146α, miR-155 and miR-181α), in operable BCa patients, with non-metastatic, invasive ductal carcinoma, not receiving neoadjuvant chemotherapy. These miRNAs, known to be involved in both tumor cell progression and immune pathways regulation, were analyzed in relation to circulating cytokines, tumor immune-cell infiltration and established prognostic clinicopathological characteristics. We have identified three different clusters, with overall low (C1), moderate (C2) or high (C3) expression levels of these six circulating miRNAs, which define three distinct groups of non-metastatic BCa patients characterized by different clinicopathological and immune-related characteristics, with possibly different clinical outcomes. Our data provide the proof-of-principle to support the notion that, up- or down-regulation of the same circulating miRNA may reflect different prognosis in BCa. Nonetheless, the prognostic and/or predictive potential of these three "signatures" needs to be further evaluated in larger cohorts of BCa patients with an, at least, 5-year clinical follow-up.
Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Biomarcadores de Tumor/sangre , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/inmunología , Citocinas/sangre , Humanos , Leucocitos Mononucleares/metabolismo , MicroARNs/sangre , PronósticoRESUMEN
Tumors and their surrounding area represent spatially organized "ecosystems", where tumor cells and the immune contextures of the different compartments are in a dynamic interplay, with potential clinical impact. Here, we aimed to investigate the prognostic significance of peritumoral tertiary lymphoid structures (TLS) either alone or jointly with the intratumoral densities and spatial distribution of CD8 + and CD163 + cells in breast cancer (BCa) patients. TLS were identified peritumorally, within the area distancing up to 5 mm from the infiltrative tumor border, counted and further characterized as adjacent or distal, in formalin-fixed, paraffin-embedded tumor tissue samples from a cohort of 167 patients, with histologically confirmed invasive ductal BCa. TLS and tumor-infiltrating immune cells were determined by H&E and immunohistochemistry. Clinical follow-up was available for 112 of these patients. Patients with peritumoral TLS exhibited worse disease-free survival (DFS) and overall survival (OS) as compared to patients lacking TLS. Moreover, the density of peritumoral TLS was found to be crucial for prognosis, since patients with abundant TLS exhibited the worst DFS and OS. By combining the density of adjacent TLS (aTLS) with our recently published intratumoral signatures based on the differential distribution of CD8 + and CD163 + in the tumor center and invasive margin, we created two improved immune signatures with superior prognostic strength and higher patient population coverage. Our observations strengthen the notion for the fundamental role of the dynamic interplay between the immune cells within the tumor microenvironment (center/invasive margin) and the tumor surrounding area (peritumoral TLS) on the clinical outcome of BCa patients.
Asunto(s)
Biomarcadores/análisis , Neoplasias de la Mama/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Estructuras Linfoides Terciarias/inmunología , Microambiente Tumoral/inmunología , Neoplasias de la Mama/patología , Femenino , Estudios de Seguimiento , Humanos , Pronóstico , Estudios Prospectivos , Estudios Retrospectivos , Tasa de Supervivencia , Estructuras Linfoides Terciarias/patologíaRESUMEN
Myelodysplastic syndromes (MDS) and their progression to secondary acute myeloid leukemia (sAML) are associated with an altered protein expression including extracellular matrix (ECM) components thereby promoting an inflammatory environment. Since the role of the proteoglycan biglycan (BGN) as an inflammatory mediator has not yet been investigated in both diseases and might play a role in disease progression, its expression and/or function was determined in cell lines and bone marrow biopsies (BMBs) of MDS and sAML patients and subpopulations of MDS stem cells by Western blot and immunohistochemistry. The bone marrow (BM) microenvironment was analyzed by multispectral imaging, patients' survival by Cox regression. ROC curves were assessed for diagnostic value of BGN. All cell lines showed a strong BGN surface expression in contrast to only marginal expression levels in mononuclear cells and CD34+ cells from healthy donors. In the MDS-L cell line, CD34-CD33+ and CD34+CD33+ blast subpopulations exhibited a differential BGN surface detection. Increased BGN mediated inflammasome activity of CD34-CD33+TLR4+ cells was observed, which was inhibited by direct targeting of BGN or NLRP3. BGN was heterogeneously expressed in BMBs of MDS and sAML, but was not detected in control biopsies. BGN expression in BMBs positively correlated with MUM1+ and CD8+, but negatively with CD33+TLR4+ cell infiltration and was accompanied by a decreased progression-free survival of MDS patients. BGN-mediated inflammasome activation appears to be a crucial mechanism in MDS pathogenesis implicating its use as suitable biomarker and potential therapeutic target. Abbreviations: Ab, antibody; alloSCT, allogenic stem cell transplant; AML, acute myeloid leukemia; BGN, biglycan; BM, bone marrow; BMB, bone marrow biopsy; casp1, caspase 1; CTLA-4, cytotoxic T lymphocyte-associated protein 4; DAMP, danger-associated molecular pattern; ECM, extracellular matrix; FCS, fetal calf serum; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; HD, healthy donor; HSPC, hematopoietic stem and progenitor cell; HSC, hematopoietic stem cell; IFN, interferon; IHC, immunohistochemistry; IL, interleukin; MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasm; MSI, multispectral imaging; NGS, next-generation sequencing; NLRP3, NLR family pyrin domain containing 3; OS, overall survival; PBMC, peripheral blood mononuclear cell; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1, PFS, progression-free survival; PRR, pattern recognition receptor; SC, stem cell; SLRP, small leucine-rich proteoglycan; TGF, transforming growth factor; TIRAP, toll/interleukin 1 receptor domain-containing adapter protein; TLR, toll-like receptor; Treg, regulatory T cell.
Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Neoplasias Primarias Secundarias , Humanos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Biglicano , Receptor Toll-Like 4 , Proteína con Dominio Pirina 3 de la Familia NLR , Inflamasomas , Síndromes Mielodisplásicos/terapia , Síndromes Mielodisplásicos/metabolismo , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Antígenos CD34/metabolismo , Caspasa 1 , Microambiente TumoralRESUMEN
BACKGROUND: Immune checkpoint inhibitors directed against programmed cell death 1 (PDCD1/PD1) receptor and programmed cell death-ligand 1 (CD274/PD-L1) have been recently successfully implemented for the treatment of many cancers, but the response rate of tumour patients is still limited due to intrinsic and acquired resistances. However, the underlying molecular mechanisms of this limited response have still to be defined in detail. The aim of this study is to uncover processes inhibiting PDCD1/CD274 expression thereby enhancing anti-tumour immune responses. The identification and characterization of microRNAs (miRNAs) targeting the 3'-untranslated region (3'-UTR) as well as the coding sequence (CDS) of CD274 will provide the basis for a new drug development. METHODS: Human melanoma cell lines and tissue samples were subjected to mRNA and/or protein expression analysis using qPCR, Western blot, flow cytometry, and/or immunohistochemistry. The data were correlated to clinical parameters. MiRNA trapping by RNA in vitro affinity purification (miTRAP) technology in combination with small RNA sequencing and different bioinformatics tools were employed to identify CD274-regulating miRNAs. RESULTS: Screening based on miTRAP in combination with RNAseq identified a large number of novel CD274-regulating candidate miRNAs, from which eight selected miRNAs were functionally validated. Five out of eight miRNAs were able to significantly reduce CD274 surface expression indicating that these miRNAs directly bind to the 3'-UTR or CDS of the CD274 gene. The miRNA-mediated inhibition of CD274 expression was accompanied by an increased T cell recognition. Furthermore, an inverse expression of three CD274-regulating miRNAs and CD274 was demonstrated in melanoma lesions. A CD274 miRNA score was generated, which was associated with disease progression and reduced survival of melanoma patients. CONCLUSIONS: These data revealed a novel mechanism that miRNAs targeting the CDS of immune checkpoint genes are functional, have prognostic relevance, and also the potential for the development of novel miRNA-based therapies.
Asunto(s)
Melanoma , MicroARNs , Regiones no Traducidas 3'/genética , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Humanos , Inmunohistoquímica , Melanoma/tratamiento farmacológico , Melanoma/genética , MicroARNs/genética , MicroARNs/uso terapéuticoRESUMEN
BACKGROUND: To control gene expression, microRNAs (miRNAs) are of key importance and their deregulation is associated with the development and progression of various cancer types. In this context, a discordant messenger RNA/protein expression pointing to extensive post-transcriptional regulation of major histocompatibility complex (MHC) class I molecules was already shown. However, only a very limited number of miRNAs targeting these molecules have yet been identified. Despite an increasing evidence of coding sequence (CDS)-located miRNA binding sites, there exists so far, no detailed study of the interaction of miRNAs with the CDS of MHC class I molecules. METHODS: Using an MS2-tethering approach in combination with small RNA sequencing, a number of putative miRNAs binding to the CDS of human leukocyte antigen (HLA)-G were identified. These candidate miRNAs were extensively screened for their effects in the HLA-G-positive JEG3 cell line. Due to the high sequence similarity between HLA-G and classical MHC class I molecules, the impact of HLA-G candidate miRNAs on HLA class I surface expression was also analyzed. The Cancer Genome Atlas data were used to correlate candidate miRNAs and HLA class I gene expression. RESULTS: Transfection of candidate miRNAs revealed that miR-744 significantly downregulates HLA-G protein levels. In contrast, overexpression of the candidate miRNAs miR-15, miR-16, and miR-424 sharing the same seed sequence resulted in an unexpected upregulation of HLA-G. Comparable results were obtained for classical MHC class I members after transfection of miRNA mimics into HEK293T cells. Analyses of The Cancer Genome Atlas data sets for miRNA and MHC class I expression further validated the results. CONCLUSIONS: Our data expand the knowledge about MHC class I regulation and showed for the first time an miRNA-dependent control of MHC class I antigens mediated by the CDS. CDS-located miRNA binding sites could improve the general use of miRNA-based therapeutic approaches as these sites are highly independent of structural variations (e.g. mutations) in the gene body. Surprisingly, miR-16 family members promoted MHC class I expression potentially in a gene activation-like mechanism.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Antígenos de Histocompatibilidad Clase I/inmunología , MicroARNs/genética , Neoplasias/inmunología , ARN Mensajero/inmunología , Apoptosis , Proliferación Celular , Antígenos de Histocompatibilidad Clase I/clasificación , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Neoplasias/genética , Neoplasias/patología , ARN Mensajero/genética , Células Tumorales CultivadasRESUMEN
BACKGROUND: Tumor immune cell infiltrates are essential in hindering cancer progression and may complement the TNM classification. CD8+ and CD163+ cells have prognostic impact in breast cancer but their spatial heterogeneity has not been extensively explored in this type of cancer. Here, their potential as prognostic biomarkers was evaluated, depending on their combined densities in the tumor center (TC) and the tumor invasive margin (IM). METHODS: CD8+ and CD163+ cells were quantified by immunohistochemistry of formalin-fixed, paraffin-embedded (FFPE) tumor tissue samples from a cohort totaling 162 patients with histologically-confirmed primary invasive non-metastatic ductal breast cancer diagnosed between 2000 and 2015. Clinical follow-up (median 6.9 years) was available for 97 of these patients. RESULTS: Differential densities of CD8+ and CD163+ cells in the combined TC and IM compartments (i.e., high(H)/low(L), respectively for CD8+ cells and the reverse L/H combination for CD163+ cells) were found to have significant prognostic value for survival, and allowed better patient stratification than TNM stage, tumor size, lymph node invasion and histological grade. The combined evaluation of CD8+ and CD163+ cell densities jointly in TC and IM further improves prediction of clinical outcomes based on disease-free and overall survival. Patients having the favorable immune signatures had favorable clinical outcomes despite poor clinicopathological parameters. CONCLUSIONS: Given the important roles of CD8+ and CD163+ cells in regulating opposing immune circuits, adding an assessment of their differential densities to the prognostic biomarker armamentarium in breast cancer would be valuable. Larger validation studies are necessary to confirm these findings. TRIAL REGISTRATIONS: Study code: IRB-ID 6079/448/10-6-13 Date of approval: 10/06/2013 Retrospective study (2000-2010) First patient prospectively enrolled 14/2/2014.
Asunto(s)
Antígenos CD/inmunología , Antígenos de Diferenciación Mielomonocítica/inmunología , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/inmunología , Linfocitos T CD8-positivos/inmunología , Receptores de Superficie Celular/inmunología , Adulto , Anciano , Neoplasias de la Mama/patología , Femenino , Humanos , Persona de Mediana Edad , PronósticoRESUMEN
[This corrects the article DOI: 10.1186/s40425-017-0240-7.].