Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Intervalo de año de publicación
1.
Euro Surveill ; 29(20)2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38757289

RESUMEN

Aedes albopictus collected in 2023 in the greater Paris area (Île-de-France) were experimentally able to transmit five arboviruses: West Nile virus from 3 days post-infection (dpi), chikungunya virus and Usutu virus from 7 dpi, dengue virus and Zika virus from 21 dpi. Given the growing number of imported dengue cases reported in early 2024 in France, surveillance of Ae. albopictus should be reinforced during the Paris Olympic Games in July, when many international visitors including from endemic countries are expected.


Asunto(s)
Aedes , Virus Chikungunya , Virus del Dengue , Virus Zika , Animales , Aedes/virología , Humanos , Virus Zika/aislamiento & purificación , Virus del Dengue/aislamiento & purificación , Virus Chikungunya/aislamiento & purificación , Paris , Mosquitos Vectores/virología , Virus del Nilo Occidental/aislamiento & purificación , Arbovirus/aislamiento & purificación , Infecciones por Arbovirus/transmisión , Flavivirus/aislamiento & purificación , Francia , Dengue/transmisión , Dengue/epidemiología , Infección por el Virus Zika/transmisión
2.
Proc Biol Sci ; 286(1894): 20182273, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30963855

RESUMEN

Insecticide resistance has been reported to impact the interactions between mosquitoes and the pathogens they transmit. However, the effect on vector competence for arboviruses still remained to be investigated. We examined the influence of two insecticide resistance mechanisms on vector competence of the mosquito Culex quinquefasciatus for two arboviruses, Rift Valley Fever virus (RVFV) and West Nile virus (WNV). Three Cx. quinquefasciatus lines sharing a common genetic background were used: two insecticide-resistant lines, one homozygous for amplification of the Ester2 locus (SA2), the other homozygous for the acetylcholinesterase ace-1 G119S mutation (SR) and the insecticide-susceptible reference line Slab. Statistical analyses revealed no significant effect of insecticide-resistant mechanisms on vector competence for RVFV. However, both insecticide resistance mechanisms significantly influenced the outcome of WNV infections by increasing the dissemination of WNV in the mosquito body, therefore leading to an increase in transmission efficiency by resistant mosquitoes. These results showed that insecticide resistance mechanisms enhanced vector competence for WNV and may have a significant impact on transmission dynamics of arboviruses. Our findings highlight the importance of understanding the impacts of insecticide resistance on the vectorial capacity parameters to assess the overall consequence on transmission.


Asunto(s)
Culex/efectos de los fármacos , Genes de Insecto , Resistencia a los Insecticidas/genética , Mosquitos Vectores/efectos de los fármacos , Fiebre del Nilo Occidental/transmisión , Virus del Nilo Occidental/fisiología , Animales , Culex/genética , Culex/virología , Conducta Alimentaria , Femenino , Mosquitos Vectores/genética , Mosquitos Vectores/virología
3.
BMC Infect Dis ; 16: 318, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27390932

RESUMEN

BACKGROUND: Dengue viruses (DENV) are comprised in four related serotypes (DENV-1 to 4) and are critically important arboviral pathogens affecting human populations in the tropics. South American countries have seen the reemergence of DENV since the 1970's associated with the progressive re-infestation by the mosquito vector, Aedes aegypti. In French Guiana, DENV is now endemic with the co-circulation of different serotypes resulting in viral epidemics. Between 2009 and 2010, a predominant serotype change occurred from DENV-1 to DENV-4 suggesting a competitive displacement. The aim of the present study was to evaluate the potential role of the mosquito in the selection of the new epidemic serotype. METHODS: To test this hypothesis of competitive displacement of one serotype by another in the mosquito vector, we performed mono- and co-infections of local Ae. aegypti collected during the inter-epidemic period with both viral autochthonous epidemic serotypes and compared infection, dissemination and transmission rates. We performed oral artificial infections of F1 populations in BSL-3 conditions and analyzed infection, dissemination and transmission rates. RESULTS: When two populations of Ae. aegypti from French Guiana were infected with either serotype, no significant differences in dissemination and transmission were observed between DENV-1 and DENV-4. However, in co-infection experiments, a strong competitive advantage for DENV-4 was seen at the midgut level leading to a much higher dissemination of this serotype. Furthermore only DENV-4 was present in Ae. aegypti saliva and therefore able to be transmitted. CONCLUSIONS: In an endemic context, mosquito vectors may be infected by several DENV serotypes. Our results suggest a possible competition between serotypes at the midgut level in co-infected mosquitoes leading to a drastically different transmission potential and, in this case, favoring the competitive displacement of DENV-1 by DENV-4. This phenomenon was observed despite a similar replicative fitness in mono-infections conditions.


Asunto(s)
Aedes/virología , Coinfección/transmisión , Virus del Dengue/patogenicidad , Insectos Vectores/virología , Animales , Coinfección/virología , Dengue/epidemiología , Virus del Dengue/inmunología , Guyana Francesa , Humanos , Serogrupo , América del Sur , Replicación Viral/fisiología
4.
Euro Surveill ; 21(39)2016 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-27719755

RESUMEN

We assessed the ability of a French population of Aedes albopictus to transmit yellow fever virus (YFV). Batches of 30 to 40 female mosquitoes were analysed at 7, 14 and 21 days post-exposure (dpe). Bodies, heads and saliva were screened for YFV. Infectious viral particles were detected in bodies and heads at 7, 14 and 21 dpe whereas the virus was found in saliva only from 14 dpe. Our results showed that Ae. albopictus can potentially transmit YFV.


Asunto(s)
Aedes/virología , Insectos Vectores/virología , Fiebre Amarilla/transmisión , Virus de la Fiebre Amarilla/crecimiento & desarrollo , Aedes/clasificación , Animales , Femenino , Humanos , Saliva/virología , Virus de la Fiebre Amarilla/aislamiento & purificación
5.
Euro Surveill ; 21(35)2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27605159

RESUMEN

We report that two laboratory colonies of Culex quinquefasciatus and Culex pipiens mosquitoes were experimentally unable to transmit ZIKV either up to 21 days post an infectious blood meal or up to 14 days post intrathoracic inoculation. Infectious viral particles were detected in bodies, heads or saliva by a plaque forming unit assay on Vero cells. We therefore consider it unlikely that Culex mosquitoes are involved in the rapid spread of ZIKV.


Asunto(s)
Culex/virología , Transmisión de Enfermedad Infecciosa , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virología , Virus Zika/aislamiento & purificación , Animales , Modelos Animales de Enfermedad , Cabeza/virología , Insectos Vectores/virología , Saliva/virología , Glándulas Salivales/virología , Factores de Tiempo , Células Vero/patología , Carga Viral , Ensayo de Placa Viral
6.
IJID Reg ; 11: 100360, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38596820

RESUMEN

Objectives: Our study targets the potential of the local urban mosquito Aedes aegypti to experimentally transmit chikungunya virus (CHIKV), dengue virus (DENV), yellow fever virus (YFV), and Zika virus (ZIKV). Methods: We collected eggs and adults of Ae. aegypti in Medellín, Colombia (from February to March 2020) for mosquito experimental infections with DENV, CHIKV, YFV and ZIKV and viral detection using the BioMark Dynamic arrays system. Results: We show that Ae. aegypti from Medellín was more prone to become infected, to disseminate and transmit CHIKV and ZIKV than DENV and YFV. Conclusions: Thus, in Colombia, chikungunya is the most serious threat to public health based on our vector competence data.

7.
Nat Commun ; 15(1): 1236, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336944

RESUMEN

The mosquito-borne disease, Yellow fever (YF), has been largely controlled via mass delivery of an effective vaccine and mosquito control interventions. However, there are warning signs that YF is re-emerging in both Sub-Saharan Africa and South America. Imported from Africa in slave ships, YF was responsible for devastating outbreaks in the Caribbean. In Martinique, the last YF outbreak was reported in 1908 and the mosquito Aedes aegypti was incriminated as the main vector. We evaluated the vector competence of fifteen Ae. aegypti populations for five YFV genotypes (Bolivia, Ghana, Nigeria, Sudan, and Uganda). Here we show that mosquito populations from the Caribbean and the Americas were able to transmit the five YFV genotypes, with YFV strains for Uganda and Bolivia having higher transmission success. We also observed that Ae. aegypti populations from Martinique were more susceptible to YFV infection than other populations from neighboring Caribbean islands, as well as North and South America. Our vector competence data suggest that the threat of re-emergence of YF in Martinique and the subsequent spread to Caribbean nations and beyond is plausible.


Asunto(s)
Aedes , Fiebre Amarilla , Animales , Humanos , Virus de la Fiebre Amarilla/genética , Mosquitos Vectores , Indias Occidentales , Región del Caribe/epidemiología , Uganda
8.
BMC Infect Dis ; 13: 610, 2013 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-24373423

RESUMEN

BACKGROUND: Aedes aegypti is extensively spread throughout South America where it has been responsible for large dengue epidemics during the last decades. Intriguingly, dengue transmission has not been reported in Uruguay and is essentially prevalent in subtropical northern Argentina which borders Uruguay. METHODS: We assessed vector competence for dengue virus (DENV) of Ae. aegypti populations collected in subtropical Argentina (Corrientes) as well as temperate Uruguay (Salto) and Argentina (Buenos Aires) in 2012 using experimental oral infections with DENV-2. Mosquitoes were incubated at 28 °C and examined at 14 and 21 days p.i. to access viral dissemination and transmission. Batches of the Buenos Aires mosquitoes were also incubated at 15 °C and 20 °C. RESULTS: Although mosquitoes from temperate Uruguay and Argentina were competent to transmit DENV, those from subtropical Argentina were more susceptible, displaying the highest virus titters in the head and presenting the highest dissemination of infection and transmission efficiency rates when incubated at 28 °C. Interestingly, infectious viral particles could be detected in saliva of mosquitoes from Buenos Aires exposed to 15 °C and 20 °C. CONCLUSIONS: There is a potential risk of establishing DENV transmission in Uruguay and for the spread of dengue outbreaks to other parts of subtropical and temperate Argentina, notably during spring and summer periods.


Asunto(s)
Aedes/virología , Virus del Dengue/aislamiento & purificación , Dengue/transmisión , Insectos Vectores/virología , Animales , Argentina , Dengue/epidemiología , Femenino , Masculino , Temperatura , Uruguay , Carga Viral
9.
PLoS Negl Trop Dis ; 17(6): e0011144, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37276229

RESUMEN

West Nile virus (WNV) and Usutu virus (USUV) are two arthropod-borne viruses that circulate in mainland France. Assessing vector competence has only been conducted so far with mosquitoes from southern France while an increasingly active circulation of WNV and USUV has been reported in the last years. The main vectors are mosquitoes of the Culex genus and the common mosquito Culex pipiens. Here, we measure the vector competence of five mosquito species (Aedes rusticus, Aedes albopictus, Anopheles plumbeus, Culex pipiens and Culiseta longiareolata) present in northeastern France. Field-collected populations were exposed to artificial infectious blood meal containing WNV or USUV and examined at different days post-infection. We show that (i) Cx. pipiens transmitted WNV and USUV, (ii) Ae. rusticus only WNV, and (iii) unexpectedly, Ae. albopictus transmitted both WNV and USUV. Less surprising, An. plumbeus was not competent for both viruses. Combined with data on distribution and population dynamics, these assessments of vector competence will help in developing a risk map and implementing appropriate prevention and control measures.


Asunto(s)
Aedes , Culex , Flavivirus , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Francia , Mosquitos Vectores
10.
PLoS Negl Trop Dis ; 17(7): e0011456, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37440582

RESUMEN

Since its detection in 2015 in Brazil, Zika virus (ZIKV) has remained in the spotlight of international public health and research as an emerging arboviral pathogen. In addition to single infection, ZIKV may occur in co-infection with dengue (DENV) and chikungunya (CHIKV) viruses, with whom ZIKV shares geographic distribution and the mosquito Aedes aegypti as a vector. The main mosquito immune response against arboviruses is RNA interference (RNAi). It is unknown whether or not the dynamics of the RNAi response differ between single arboviral infections and co-infections. In this study, we investigated the interaction of ZIKV and DENV, as well as ZIKV and CHIKV co-infections with the RNAi response in Ae. aegypti. Using small RNA sequencing, we found that the efficiency of small RNA production against ZIKV -a hallmark of antiviral RNAi-was mostly similar when comparing single and co-infections with either DENV or CHIKV. Silencing of key antiviral RNAi proteins, showed no change in effect on ZIKV replication when the cell is co-infected with ZIKV and DENV or CHIKV. Interestingly, we observed a negative effect on ZIKV replication during CHIKV co-infection in the context of Ago2-knockout cells, though his effect was absent during DENV co-infection. Overall, this study provides evidence that ZIKV single or co-infections with CHIKV or DENV are equally controlled by RNAi responses. Thus, Ae. aegypti mosquitoes and derived cells support co-infections of ZIKV with either CHIKV or DENV to a similar level than single infections, as long as the RNAi response is functional.


Asunto(s)
Aedes , Arbovirus , Fiebre Chikungunya , Virus Chikungunya , Coinfección , Dengue , Infección por el Virus Zika , Virus Zika , Animales , Virus Zika/genética , Virus Chikungunya/genética , Interferencia de ARN , Mosquitos Vectores/genética , Arbovirus/fisiología
11.
J Travel Med ; 30(4)2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37171132

RESUMEN

BACKGROUND: Climate change and globalization contribute to the expansion of mosquito vectors and their associated pathogens. Long spared, temperate regions have had to deal with the emergence of arboviruses traditionally confined to tropical regions. Chikungunya virus (CHIKV) was reported for the first time in Europe in 2007, causing a localized outbreak in Italy, which then recurred repeatedly over the years in other European localities. This raises the question of climate effects, particularly temperature, on the dynamics of vector-borne viruses. The objective of this study is to improve the understanding of the molecular mechanisms set up in the vector in response to temperature. METHODS: We combine three complementary approaches by examining Aedes albopictus mosquito gene expression (transcriptomics), bacterial flora (metagenomics) and CHIKV evolutionary dynamics (genomics) induced by viral infection and temperature changes. RESULTS: We show that temperature alters profoundly mosquito gene expression, bacterial microbiome and viral population diversity. We observe that (i) CHIKV infection upregulated most genes (mainly in immune and stress-related pathways) at 20°C but not at 28°C, (ii) CHIKV infection significantly increased the abundance of Enterobacteriaceae Serratia marcescens at 28°C and (iii) CHIKV evolutionary dynamics were different according to temperature. CONCLUSION: The substantial changes detected in the vectorial system (the vector and its bacterial microbiota, and the arbovirus) lead to temperature-specific adjustments to reach the ultimate goal of arbovirus transmission; at 20°C and 28°C, the Asian tiger mosquito Ae. albopictus was able to transmit CHIKV at the same efficiency. Therefore, CHIKV is likely to continue its expansion in the northern regions and could become a public health problem in more countries than those already affected in Europe.


Asunto(s)
Aedes , Fiebre Chikungunya , Virus Chikungunya , Animales , Humanos , Cambio Climático , Temperatura , Multiómica , Fiebre Chikungunya/epidemiología , Virus Chikungunya/genética
12.
Front Microbiol ; 14: 1324069, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38298539

RESUMEN

West Nile virus (WNV) is a single-stranded positive-sense RNA virus (+ssRNA) belonging to the genus Orthoflavivirus. Its enzootic cycle involves mosquito vectors, mainly Culex, and wild birds as reservoir hosts, while mammals, such as humans and equids, are incidental dead-end hosts. It was first discovered in 1934 in Uganda, and since 1999 has been responsible for frequent outbreaks in humans, horses and wild birds, mostly in America and in Europe. Virus spread, as well as outbreak severity, can be influenced by many ecological factors, such as reservoir host availability, biodiversity, movements and competence, mosquito abundance, distribution and vector competence, by environmental factors such as temperature, land use and precipitation, as well as by virus genetic factors influencing virulence or transmission. Former studies have investigated WNV factors of virulence, but few have compared viral genetic determinants of pathogenicity in different host species, and even fewer have considered the genetic drivers of virus invasiveness and excretion in Culex vector. In this study, we characterized WNV genetic factors implicated in the difference in virulence observed in two lineage 1 WNV strains from the Mediterranean Basin, the first isolated during a significant outbreak reported in Israel in 1998, and the second from a milder outbreak in Italy in 2008. We used an innovative and powerful reverse genetic tool, e.g., ISA (infectious subgenomic amplicons) to generate chimeras between Israel 1998 and Italy 2008 strains, focusing on non-structural (NS) proteins and the 3'UTR non-coding region. We analyzed the replication of these chimeras and their progenitors in mammals, in BALB/cByJ mice, and vector competence in Culex (Cx.) pipiens mosquitoes. Results obtained in BALB/cByJ mice suggest a role of the NS2B/NS3/NS4B/NS5 genomic region in viral attenuation in mammals, while NS4B/NS5/3'UTR regions are important in Cx. pipiens infection and possibly in vector competence.

13.
BMC Infect Dis ; 12: 300, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23151056

RESUMEN

BACKGROUND: The mosquito Aedes albopictus is undergoing a worldwide expansion with potential consequences on transmission of various arboviruses. This species has been first detected in Lebanon in 2003. METHODS: We performed a phylogenetic study of Lebanese specimens and assessed their host preference by detecting human, cat, dog and chicken immunoglobulins in mosquito blood-meals. Their capacity to transmit arboviruses was investigated by providing infectious blood-meals using an artificial feeding system followed by detection of viral particles in mosquito saliva. RESULTS: Our results suggest that Lebanese strains are part of the recent wave of Ae. albopictus expansion and are related to some European, African and North American strains. They exhibited a host preference towards humans and an important capacity to transmit arboviruses. Indeed, we showed that Ae. albopictus was able to transmit chikungunya (CHIKV), dengue (DENV) and West-Nile (WNV) viruses. At day 10 after an infectious blood-meal at a titer of 108 MID50/ml, 30% of mosquitoes delivered an average of 515 ± 781 viral particles of CHIKV in saliva collected using a forced salivation technique and 55% with an average of 245 ± 304 viral particles when infected with WNV. Whereas DENV was not found in saliva at day 10 post-infection (pi), an average of 174 ± 455 viral particles was detected in 38.1% of mosquitoes tested at day 21 after an infectious blood-meal at a higher titer of 109 MID50/ml. CONCLUSION: These observations suggest that Ae. albopictus around Beirut is a potential vector of the three tested arboviruses.


Asunto(s)
Aedes/fisiología , Aedes/virología , Arbovirus/aislamiento & purificación , Vectores de Enfermedades , Conducta Alimentaria , Aedes/clasificación , Aedes/genética , Animales , Infecciones por Arbovirus/transmisión , Gatos , Pollos , Brotes de Enfermedades , Perros , Femenino , Humanos , Líbano , Datos de Secuencia Molecular , Medición de Riesgo , Análisis de Secuencia de ADN
14.
Sci Rep ; 12(1): 6973, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484193

RESUMEN

The mosquito Aedes albopictus is an invasive species first detected in Europe in Albania in 1979, and now established in 28 European countries. Temperature is a limiting factor in mosquito activities and in the transmission of associated arboviruses namely chikungunya (CHIKV) and dengue (DENV). Since 2007, local transmissions of CHIKV and DENV have been reported in mainland Europe, mainly in South Europe. Thus, the critical question is how far north transmission could occur. In this context, the Albanian infestation by Ae. albopictus is of interest because the species is present up to 1200 m of altitude; this allows using altitude as a proxy for latitude. Here we show that Ae. albopictus can transmit CHIKV at 28 °C as well as 20 °C, however, the transmission of DENV is only observed at 28 °C. We conclude that if temperature is the key environmental factor limiting transmission, then transmission of CHIKV, but not DENV is feasible in much of Europe.


Asunto(s)
Aedes , Fiebre Chikungunya , Virus Chikungunya , Dengue , Animales , Temperatura
15.
Nat Commun ; 13(1): 4490, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918360

RESUMEN

First identified in 1947, Zika virus took roughly 70 years to cause a pandemic unusually associated with virus-induced brain damage in newborns. Zika virus is transmitted by mosquitoes, mainly Aedes aegypti, and secondarily, Aedes albopictus, both colonizing a large strip encompassing tropical and temperate regions. As part of the international project ZIKAlliance initiated in 2016, 50 mosquito populations from six species collected in 12 countries were experimentally infected with different Zika viruses. Here, we show that Ae. aegypti is mainly responsible for Zika virus transmission having the highest susceptibility to viral infections. Other species play a secondary role in transmission while Culex mosquitoes are largely non-susceptible. Zika strain is expected to significantly modulate transmission efficiency with African strains being more likely to cause an outbreak. As the distribution of Ae. aegypti will doubtless expand with climate change and without new marketed vaccines, all the ingredients are in place to relive a new pandemic of Zika.


Asunto(s)
Aedes , Infección por el Virus Zika , Virus Zika , Animales , Brotes de Enfermedades , Humanos , Recién Nacido , Mosquitos Vectores
16.
Trop Med Int Health ; 16(1): 134-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21371212

RESUMEN

OBJECTIVES: To estimate the vector competence of Aedes aegypti populations sampled from distinct anthropogenic environments in French Guiana, Guadeloupe and Martinique for the strain CHIKV 06.21. METHODS: F(1)/F(2) females were orally infected at titres of 10(6) and 10(7.5) pfu/ml in blood-meals. Disseminated infection rates (DIR) of mosquitoes were estimated using indirect fluorescent antibody assay on heads' squashes, 7 or 14 days post-infection (pi). RESULTS: At a titre of 10(7.5) pfu/ml, DIR ranged from 88.9% to 100.0% and were not significantly different whether assessed at day 7 or 14 pi. At a titre of 10(6) pfu/ml, DIR observed 7 days pi ranged from 37.6 to 62.0%. CONCLUSIONS: Ae. aegypti from French Guiana and French West Indies are highly competent to transmit CHIKV. An evaluation of DIR 7 days rather than 14 days pi is adequate to estimate vector competence. The titre of 10(6) pfu/ml allows us to distinguish Ae. aegypti populations originating from distinct environments (dense or diffuse housing) by their vector competence. This assessment is a prerequisite to better evaluate the potential risk of Chikungunya outbreaks once the virus is introduced from endemic regions.


Asunto(s)
Aedes/virología , Infecciones por Alphavirus/veterinaria , Virus Chikungunya/patogenicidad , Insectos Vectores/virología , Infecciones por Alphavirus/transmisión , Animales , Virus Chikungunya/aislamiento & purificación , Susceptibilidad a Enfermedades , Conducta Alimentaria , Femenino , Guyana Francesa , Guadalupe , Martinica
17.
PLoS One ; 16(4): e0249471, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33793656

RESUMEN

Mosquito control is implemented when arboviruses are detected in patients or in field-collected mosquitoes. However, mass screening of mosquitoes is usually laborious and expensive, requiring specialized expertise and equipment. Detection of virus in mosquito saliva using honey-impregnated filter papers seems to be a promising method as it is non-destructive and allows monitoring the viral excretion dynamics over time from the same mosquito. Here we test the use of filter papers to detect chikungunya virus in mosquito saliva in laboratory conditions, before proposing this method in large-scale mosquito surveillance programs. We found that 0.9 cm2 cards impregnated with a 50% honey solution could replace the forced salivation technique as they offered a viral RNA detection until 7 days after oral infection of Aedes aegypti and Aedes albopictus mosquitoes with CHIKV.


Asunto(s)
Aedes/virología , Virus Chikungunya/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Animales , Virus Chikungunya/aislamiento & purificación , Miel , Papel , ARN Viral/genética , ARN Viral/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/instrumentación , Saliva/virología , Manejo de Especímenes/instrumentación , Manejo de Especímenes/métodos
18.
PLoS Negl Trop Dis ; 14(10): e0008475, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33007002

RESUMEN

The mosquito Aedes albopictus was detected for the first time in Tunisia in 2018. With its establishment in the capital city of Tunis, local health authorities fear the introduction of new human arboviral diseases, like what happened in Europe with unexpected local cases of chikungunya, dengue and Zika. Even though this mosquito is competent to transmit the arboviruses mentioned above, the transmission level will vary depending on the couple, mosquito population and virus genotype. Here, we assessed the vector competence of Ae. albopictus Tunisia by experimental infections with chikungunya (CHIKV), dengue (DENV), and Zika (ZIKV) viruses. We found that Ae. albopictus Tunisia was highly competent for CHIKV (transmission efficiency of 25% at 21 post-infection) and to a lesser extent, for ZIKV (8.7%) and DENV (8.3%). Virus was detected in mosquito saliva at day 3 (CHIKV), day 10 (ZIKV) and day 21 (DENV) post-infection. These results suggest that the risk of emergence of chikungunya is the highest imposing a more sustained surveillance to limit Ae. albopictus populations in densely populated urban dwellings and at the entry points of travelers returning from CHIKV-endemic regions.


Asunto(s)
Aedes/virología , Fiebre Chikungunya/transmisión , Dengue/transmisión , Mosquitos Vectores/virología , Infección por el Virus Zika/transmisión , Animales , Línea Celular , Virus Chikungunya , Chlorocebus aethiops , Virus del Dengue , Femenino , Masculino , Conejos , Saliva/virología , Túnez , Células Vero , Virus Zika
19.
Cell Rep ; 33(11): 108506, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33326778

RESUMEN

Transgenerational immune priming (TGIP) allows memory-like immune responses to be transmitted from parents to offspring in many invertebrates. Despite increasing evidence for TGIP in insects, the mechanisms involved in the transfer of information remain largely unknown. Here, we show that Drosophila melanogaster and Aedes aegypti transmit antiviral immunological memory to their progeny that lasts throughout generations. We observe that TGIP, which is virus and sequence specific but RNAi independent, is initiated by a single exposure to disparate RNA viruses and also by inoculation of a fragment of viral double-stranded RNA. The progeny, which inherit a viral DNA that is only a fragment of the viral RNA used to infect the parents, display enriched expression of genes related to chromatin and DNA binding. These findings represent a demonstration of TGIP for RNA viruses in invertebrates, broadly increasing our understanding of the immune response, host genome plasticity, and antiviral memory of the germline.


Asunto(s)
Aedes/virología , Antivirales/inmunología , Drosophila melanogaster/virología , Memoria Inmunológica/inmunología , Animales , Insectos
20.
PLoS Negl Trop Dis ; 14(3): e0008163, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32203510

RESUMEN

Zika virus (ZIKV) is a Flavivirus (Flaviviridae) transmitted to humans mainly by the bite of an infected Aedes mosquitoes. Aedes aegypti is the primary epidemic vector of ZIKV and Ae. albopictus, the secondary one. However, the epidemiological role of both Aedes species in Central Africa where Ae. albopictus was recently introduced is poorly characterized. Field-collected strains of Ae. aegypti and Ae. albopictus from different ecological settings in Central Africa were experimentally infected with a ZIKV strain isolated in West Africa. Mosquitoes were analysed at 14- and 21-days post-exposure. Both Ae. aegypti and Ae. albopictus were able to transmit ZIKV but with higher overall transmission efficiency for Ae. aegypti (57.9%) compared to Ae. albopictus (41.5%). In addition, disseminated infection and transmission rates for both Ae. aegypti and Ae. albopictus varied significantly according to the location where they were sampled from. We conclude that both Ae. aegypti and Ae. albopictus are able to transmit ZIKV and may intervene as active Zika vectors in Central Africa. These findings could contribute to a better understanding of the epidemiological transmission of ZIKV in Central Africa and develop suitable strategy to prevent major ZIKV outbreaks in this region.


Asunto(s)
Aedes/virología , Mosquitos Vectores/virología , Infección por el Virus Zika/virología , Virus Zika/aislamiento & purificación , Aedes/clasificación , África Central , Animales , Susceptibilidad a Enfermedades , Femenino , Mapeo Geográfico , Mosquitos Vectores/clasificación , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/transmisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA