Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Appl Clin Med Phys ; 23 Suppl 1: e13743, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36705246

RESUMEN

In recent decades, the principal goals of participants in the field of radiation biologists have included defining dose thresholds for cancer and non-cancer endpoints to be used by regulators, clinicians and industry, as well as informing on best practice radiation utilization and protection applications. Importantly, much of this work has required an intimate relationship between "bench" radiation biology scientists and their target audiences (such as physicists, medical practitioners and epidemiologists) in order to ensure that the requisite gaps in knowledge are adequately addressed. However, despite the growing risk for public exposure to higher-than-background levels of radiation, e.g. from long-distance travel, the increasing use of ionizing radiation during medical procedures, the threat from geopolitical instability, and so forth, there has been a dramatic decline in the number of qualified radiation biologists in the U.S. Contributing factors are thought to include the loss of applicable training programs, loss of jobs, and declining opportunities for advancement. This report was undertaken in order to begin addressing this situation since inaction may threaten the viability of radiation biology as a scientific discipline.


Asunto(s)
Médicos , Radiobiología , Humanos , Estados Unidos , Recursos Humanos
2.
Bioorg Med Chem Lett ; 28(16): 2688-2692, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29650288

RESUMEN

New treatment modalities for glioblastoma multiforme (GBM) are urgently needed. Proton therapy is considered one of the most effective forms of radiation therapy for GBM. DNA alkylating agents such as temozolomide (TMZ) are known to increase the radiosensitivity of GBM to photon radiation. TMZ is a fairly impotent agent, while duocarmycin SA (DSA) is an extremely potent cytotoxic agent capable of inducing a sequence-selective alkylation of duplex DNA. Here, the effects of sub-nM concentrations of DSA on the radiosensitivity of a human GBM cell line (U-138) to proton irradiation were examined. Radiation sensitivity was determined by viability, apoptosis, necrosis and clonogenic assays. DSA concentrations as low as 0.001 nM significantly sensitized U-138 cells to proton irradiation. DSA demonstrates synergistic cytotoxicity against GBM cells treated with proton radiation in vitro, which may represent a novel therapeutic alternative for the treatment of GBM.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Indoles/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Duocarmicinas , Glioblastoma , Humanos , Necrosis/inducido químicamente , Protones , Pirroles/farmacología
5.
Front Oncol ; 13: 1070485, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845698

RESUMEN

Introduction: Treatment-related toxicity following either chemo- or radiotherapy can create significant clinical challenges for HNSCC cancer patients, particularly those with HPV-associated oropharyngeal squamous cell carcinoma. Identifying and characterizing targeted therapy agents that enhance the efficacy of radiation is a reasonable approach for developing de-escalated radiation regimens that result in less radiation-induced sequelae. We evaluated the ability of our recently discovered, novel HPV E6 inhibitor (GA-OH) to radio-sensitize HPV+ and HPV- HNSCC cell lines to photon and proton radiation. Methods: Radiosensitivity to either photon or proton beams was assessed using various assays such as colony formation assay, DNA damage markers, cell cycle and apoptosis, western blotting, and primary cells. Calculations for radiosensitivity indices and relative biological effectiveness (RBE) were based on the linear quadratic model. Results: Our results showed that radiation derived from both X-ray photons and protons is effective in inhibiting colony formation in HNSCC cells, and that GA-OH potentiated radiosensitivity of the cells. This effect was stronger in HPV+ cells as compared to their HPV- counterparts. We also found that GA-OH was more effective than cetuximab but less effective than cisplatin (CDDP) in enhancing radiosensitivity of HSNCC cells. Further tests indicated that the effects of GA-OH on the response to radiation may be mediated through cell cycle arrest, particularly in HPV+ cell lines. Importantly, the results also showed that GA-OH increases the apoptotic induction of radiation as measured by several apoptotic markers, even though radiation alone had little effect on apoptosis. Conclusion: The enhanced combinatorial cytotoxicity found in this study indicates the strong potential of E6 inhibition as a strategy to sensitize cells to radiation. Future research is warranted to further characterize the interaction of GA-OH derivatives and other E6-specific inhibitors with radiation, as well as its potential to improve the safety and effectiveness of radiation treatment for patients with oropharyngeal cancer.

6.
PLoS One ; 18(5): e0282958, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37256873

RESUMEN

Human exposure to low-to-moderate dose ionizing radiation (LMD-IR) is increasing via environmental, medical, occupational sources. Acute exposure to LMD-IR can cause subclinical damage to cells, resulting in altered gene expression and cellular function within the human brain. It has been difficult to identify diagnostic and predictive biomarkers of exposure using traditional research models due to factors including lack of 3D structure in monolayer cell cultures, limited ability of animal models to accurately predict human responses, and technical limitations of studying functional human brain tissue. To address this gap, we generated brain/cerebral organoids from human induced pluripotent stem cells to study the radiosensitivity of human brain cells, including neurons, astrocytes, and oligodendrocytes. While organoids have become popular models for studying brain physiology and pathology, there is little evidence to confirm that exposing brain organoids to LMD-IR will recapitulate previous in vitro and in vivo observations. We hypothesized that exposing brain organoids to proton radiation would (1) cause a time- and dose-dependent increase in DNA damage, (2) induce cell type-specific differences in radiosensitivity, and (3) increase expression of oxidative stress and DNA damage response genes. Organoids were exposed to 0.5 or 2 Gy of 250 MeV protons and samples were collected at 30 minute, 24 hour, and 48 hour timepoints. Using immunofluorescence and RNA sequencing, we found time- and dose-dependent increases in DNA damage in irradiated organoids; no changes in cell populations for neurons, oligodendrocytes, and astrocytes by 24 hours; decreased expression of genes related to oligodendrocyte lineage, astrocyte lineage, mitochondrial function, and cell cycle progression by 48 hours; increased expression of genes related to neuron lineage, oxidative stress, and DNA damage checkpoint regulation by 48 hours. Our findings demonstrate the possibility of using organoids to characterize cell-specific radiosensitivity and early radiation-induced gene expression changes within the human brain, providing new avenues for further study of the mechanisms underlying acute neural cell responses to IR exposure at low-to-moderate doses.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Humanos , Radiación Ionizante , Encéfalo , Neuronas , Organoides
7.
Front Oncol ; 12: 928545, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36119491

RESUMEN

High-risk human papillomaviruses (HPVs) cause virtually all cervical cancer cases and are also associated with other types of anogenital and oropharyngeal cancers. Normally, HPV exists as a circular episomal DNA in the infected cell. However, in some instances, it integrates into the human genome in such a way as to enable increased expression of viral oncogenes, thereby leading to carcinogenesis. Since viral integration requires breaks in both viral and human genomes, DNA damage likely plays a key role in this critical process. One potentially significant source of DNA damage is exposure to elevated doses of ionizing radiation. Natural background radiation is ubiquitous; however, some populations, including radiological workers, radiotherapy patients, and astronauts, are exposed to significantly higher radiation doses, as well as to different types of radiation such as particle radiation. We hypothesize that ionizing radiation-induced DNA damage facilitates the integration of HPV into the human genome, increasing the risk of developing HPV-related cancers in the exposed population. To test this, we first determined the kinetics of DNA damage in keratinocytes exposed to ionizing radiation (protons) by assessing γ-H2AX foci formation using immunofluorescence (direct damage), and also measured ROS and 8-oxoG levels via DCFDA and Avidin-FITC (indirect damage).As anticipated, direct DNA damage was observed promptly, within 30 min, whereas indirect DNA damage was delayed due to the time required for ROS to accumulate and cause oxidative damage. Although radiation was lethal at high doses, we were able to establish an experimental system where radiation exposure (protons and X-rays) induced DNA damage dose-dependently without causing major cytotoxic effects as assessed by several cytotoxicity assays. Most importantly, we explored the impact of radiation exposure on integration frequency using a clonogenic assay and demonstrated that as predicted, proton-induced DNA damage promotes the integration of HPV-like foreign DNA in oral keratinocytes. Overall, the insights gained from this work enable us to better understand the contribution of radiation exposure and DNA damage to HPV-mediated carcinogenesis and direct us toward strategies aimed at preventing malignancies in HPV-infected individuals.

8.
Cell Rep ; 33(10): 108434, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33242409

RESUMEN

Deep space exploration will require real-time, minimally invasive monitoring of astronaut health to mitigate the potential health impairments caused by space radiation and microgravity. Genotoxic stress in humans can be monitored by quantifying the amount of DNA double-strand breaks (DSBs) in immune cells from a simple finger prick. In a cohort of 674 healthy donors, we show that the endogenous level of DSBs increases with age and with latent cytomegalovirus infection. To map the range of human responses to space radiation, we then study DSB induction and repair in immune cells from 319 healthy donors after the cells are exposed to galactic cosmic ray components and lymphocytes from 30 cancer patients after radiotherapy. Individuals with low baseline DSB have fewer clinical complications, enhanced DNA damage repair responses, and a functional dose-dependent cytokine response in healthy donor cells. This supports the use of DSB monitoring for health resilience in space.


Asunto(s)
Roturas del ADN de Doble Cadena , Daño del ADN , ADN/efectos de la radiación , Adulto , Anciano , ADN/genética , ADN/metabolismo , Reparación del ADN/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Femenino , Histonas/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Estrés Oxidativo/fisiología , Pronóstico , Tolerancia a Radiación , Vuelo Espacial , Ingravidez
9.
Mol Oncol ; 14(11): 2796-2813, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32652647

RESUMEN

Patient-derived samples present an advantage over current cell line models of high-grade serous ovarian cancer (HGSOC) that are not always reliable and phenotypically faithful models of in vivo HGSOC. To improve upon cell line models of HGSOC, we set out to characterize a panel of patient-derived cells and determine their epithelial and mesenchymal characteristics. We analyzed RNA and protein expression levels in patient-derived xenograft (PDX) models of HGSOC, and functionally characterized these models using flow cytometry, wound healing assays, invasion assays, and spheroid cultures. Besides in vitro work, we also evaluated the growth characteristics of PDX in vivo (orthotopic PDX). We found that all samples had hybrid characteristics, covering a spectrum from an epithelial-to-mesenchymal state. Samples with a stronger epithelial phenotype were more active in self-renewal assays and more tumorigenic in orthotopic xenograft models as compared to samples with a stronger mesenchymal phenotype, which were more migratory and invasive. Additionally, we observed an inverse association between microRNA let-7 (lethal-7) expression and stemness, consistent with the loss of let-7 being an important component of the cancer stem cell phenotype. We observed that lower let-7 levels were associated with the epithelial state and a lower epithelial mesenchymal transition (EMT) score, more efficient spheroid and tumor formation, and increased sensitivity to platinum-based chemotherapy. Surprisingly, in these HGSOC cells, stemness could be dissociated from invasiveness: Cells with lower let-7 levels were more tumorigenic, but less migratory, and with a lower EMT score, than those with higher let-7 levels. We conclude that let-7 expression and epithelial/mesenchymal state are valuable predictors of HGSOC proliferation, in vitro self-renewal, and tumor burden in vivo.


Asunto(s)
MicroARNs/genética , Invasividad Neoplásica/genética , Neoplasias Quísticas, Mucinosas y Serosas/genética , Neoplasias Ováricas/genética , Animales , Línea Celular Tumoral , Movimiento Celular , Autorrenovación de las Células , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Endogámicos NOD , Ratones SCID , Invasividad Neoplásica/patología , Neoplasias Quísticas, Mucinosas y Serosas/patología , Células Madre Neoplásicas/patología , Neoplasias Ováricas/patología
10.
Radiat Res ; 172(1): 21-9, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19580504

RESUMEN

On a mission to Mars, astronauts will be exposed to a complex mix of radiation from galactic cosmic rays. We have demonstrated a loss of bone mass from exposure to types of radiation relevant to space flight at doses of 1 and 2 Gy. The effects of space radiation on skeletal muscle, however, have not been investigated. To evaluate the effect of simulated galactic cosmic radiation on muscle fiber area and bone volume, we examined mice from a study in which brains were exposed to collimated iron-ion radiation. The collimator transmitted a complex mix of charged secondary particles to bone and muscle tissue that represented a low-fidelity simulation of the space radiation environment. Measured radiation doses of uncollimated secondary particles were 0.47 Gy at the proximal humerus, 0.24-0.31 Gy at the midbelly of the triceps brachii, and 0.18 Gy at the proximal tibia. Compared to nonirradiated controls, the proximal humerus of irradiated mice had a lower trabecular bone volume fraction, lower trabecular thickness, greater cortical porosity, and lower polar moment of inertia. The tibia showed no differences in any bone parameter. The triceps brachii of irradiated mice had fewer small-diameter fibers and more fibers containing central nuclei. These results demonstrate a negative effect on the skeletal muscle and bone systems of simulated galactic cosmic rays at a dose and LET range relevant to a Mars exploration mission. The presence of evidence of muscle remodeling highlights the need for further study.


Asunto(s)
Densidad Ósea/efectos de la radiación , Radiación Cósmica/efectos adversos , Húmero/efectos de la radiación , Fibras Musculares Esqueléticas/efectos de la radiación , Tibia/efectos de la radiación , Animales , Peso Corporal/efectos de la radiación , Húmero/diagnóstico por imagen , Húmero/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Tamaño de los Órganos , Dosis de Radiación , Tibia/diagnóstico por imagen , Tibia/patología , Microtomografía por Rayos X
11.
Radiat Res ; 170(3): 292-8, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18763858

RESUMEN

The present report describes initial steps in the development of an animal model for assessing the effects of low levels of radiation encountered in the space environment on human cognitive function by examining the effects of radiation on a range of neurobehavioral functions in rodents that are similar to a number of basic human cognitive functions. The present report presents baseline data on the effects of gamma radiation on neurobehavioral functions in rodents (psychomotor speed, discrimination accuracy and inhibitory control) that are similar to those in humans. Two groups of eight Long-Evans rats were trained to perform a reaction-time task that required them to depress a lever for 1-3 s and to release the lever within 1.5 s of a release stimulus (correct trial) to receive a reward. Releasing the lever prior to the release stimulus (error) terminated the trial. One group was exposed to head-only gamma radiation (5 Gy at a dose rate of 1 Gy/min), while the second group was sham-irradiated using the same anesthesia protocol. The irradiated group showed significant deficits in both performance accuracy (percentage correct scores) and performance reliability (false alarm scores) from 1 to 4 months after irradiation, indicating clear performance impairments. The increase in false alarm scores is consistent with reduced inhibitory control and a shift toward increased anticipatory responses at the cost of decreased accuracy. The nonirradiated group showed no such changes over the same period.


Asunto(s)
Conducta Animal/fisiología , Conducta Animal/efectos de la radiación , Encéfalo/fisiología , Encéfalo/efectos de la radiación , Destreza Motora/fisiología , Tiempo de Reacción/fisiología , Tiempo de Reacción/efectos de la radiación , Animales , Relación Dosis-Respuesta en la Radiación , Rayos gamma , Masculino , Destreza Motora/efectos de la radiación , Dosis de Radiación , Ratas , Ratas Long-Evans
12.
Neurosci Lett ; 416(3): 231-5, 2007 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-17376593

RESUMEN

Phosphenes ("light flashes") have been reported by most astronauts on space missions and by healthy subjects whose eyes were exposed to ionizing radiation in early experiments in particle accelerators. The conditions of occurrence suggested retinal effects of heavy ions. To develop an in vivo animal model, we irradiated the eyes of anesthetized wild-type mice with repeated bursts of 12C ions delivered under controlled conditions in accelerator. 12C ions evoked electrophysiological retinal mass responses and activated the visual system as indicated by responses recorded from the visual cortex. No retinal immunohistological damage was detected. Mice proved a suitable animal model to study radiation-induced phosphenes in vivo and our findings are consistent with an origin of phosphenes in radiation activating the retina.


Asunto(s)
Carbono , Iones Pesados , Retina/efectos de la radiación , Corteza Visual/fisiología , Animales , Electrorretinografía/métodos , Femenino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Fosfenos/efectos de la radiación , Retina/anatomía & histología , Corteza Visual/efectos de la radiación , Vías Visuales/fisiología , Vías Visuales/efectos de la radiación
13.
Radiat Res ; 164(4 Pt 2): 545-51, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16187785

RESUMEN

The induction of apoptosis, TP53 expression, caspase activation and cell toxicity were investigated after exposure of cells of the human neuronal progenitor cell line Ntera2 (NT2) to low-LET radiation (gamma and X rays). The data indicates that irradiation of NT2 cells quickly induced TP53 expression, which was followed in time by an increase in caspase activity, and ultimately resulted in the induction of apoptosis. Induction of apoptosis was dependent on dose, and the highest levels were measured 48 h after exposure. For comparison, the level of apoptosis induced by high-LET particle radiation (1 GeV/ nucleon iron ions) was also determined and was found to be dependent on dose. The relative biological effectiveness (RBE) was estimated from the slopes of the dose-response curves for the induction of apoptosis. The RBE(max) for apoptosis 48 h after exposure was at least 3.4. In short, exposure to high-LET radiation results in a more efficient and greater induction of apoptosis in human neuronal progenitor cells than low-LET radiation.


Asunto(s)
Apoptosis/efectos de la radiación , Regulación de la Expresión Génica/efectos de la radiación , Genes p53 , Iones Pesados/efectos adversos , Neuronas/efectos de la radiación , Células Madre/efectos de la radiación , Caspasa 3 , Caspasa 9 , Caspasas/metabolismo , Células Cultivadas , Rayos gamma , Humanos , Hierro , Transferencia Lineal de Energía
14.
Free Radic Biol Med ; 36(2): 259-66, 2004 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-14744637

RESUMEN

Ionizing radiation-induced adverse biological effects impose serious challenges to astronauts during extended space travel. Of particular concern is the radiation from highly energetic, heavy, charged particles known as HZE particles. The objective of the present study was to characterize HZE particle radiation-induced adverse biological effects and evaluate the effect of D-selenomethionine (SeM) on the HZE particle radiation-induced adverse biological effects. The results showed that HZE particle radiation can increase oxidative stress, cytotoxicity, and cell transformation in vitro, and decrease the total antioxidant status in irradiated Sprague-Dawley rats. These adverse biological effects were all preventable by treatment with SeM, suggesting that SeM is potentially useful as a countermeasure against space radiation-induced adverse effects. Treatment with SeM was shown to enhance ATR and CHK2 gene expression in cultured human thyroid epithelial cells. As ionizing radiation is known to result in DNA damage and both ATR and CHK2 gene products are involved in DNA damage, it is possible that SeM may prevent HZE particle radiation-induced adverse biological effects by enhancing the DNA repair machinery in irradiated cells.


Asunto(s)
Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/efectos de la radiación , Radiación Cósmica/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Selenometionina/farmacología , Medicina Aeroespacial , Animales , Antioxidantes/análisis , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Quinasa de Punto de Control 2 , Daño del ADN/efectos de la radiación , Reparación del ADN/efectos de los fármacos , Suplementos Dietéticos , Células Epiteliales , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Selenometionina/administración & dosificación , Glándula Tiroides
15.
J Neurosci Methods ; 124(2): 197-205, 2003 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-12706850

RESUMEN

We present a numerical method which provides the ability to analyze digitized microscope images of retinal explants and quantify neurite outgrowth. Few parameters are required as input and limited user interaction is necessary to process an entire experiment of images. This eliminates fatigue related errors and user-related bias common to manual analysis. The method does not rely on stained images and handles images of variable quality. The algorithm is used to determine time and dose dependent, in vitro, neurotoxic effects of 1 GeV per nucleon iron particles in retinal explants. No neurotoxic effects are detected until 72 h after exposure; at 72 h, significant reductions of neurite outgrowth occurred at doses higher than 10 cGy.


Asunto(s)
Algoritmos , Neuritas/fisiología , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Embrión de Pollo , Relación Dosis-Respuesta a Droga , Procesamiento de Imagen Asistido por Computador/instrumentación , Procesamiento de Imagen Asistido por Computador/métodos , Neuritas/efectos de los fármacos
16.
J Radiat Res ; 43 Suppl: S219-24, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12793762

RESUMEN

Apolipoprotein E (apoE) is a lipid binding protein that plays an important role in tissue repair following brain injury. In the present studies, we have investigated whether apoE affects the behavioral toxicity of high charge, high energy (HZE) particle radiation. METHODS: Sixteen male apoE knockout (KO) mice and sixteen genetically matched wild-type (WT) C57BL mice were used in this experiment. Half of the KO and half of the WT animals were irradiated with 600 MeV/amu iron particles (2 Gy whole body). The effect of irradiation on motor coordination and stamina (Rotarod test), exploratory behavior (open field test), and spatial working and reference memory (Morris water maze) was assessed. ROTAROD TEST: Performance was adversely affected by radiation exposure in both KO and WT groups at 30 d after irradiation. By 60 d after radiation, the radiation effect was lost in WT, but still apparent in irradiated KO mice. OPEN FIELD TEST: Radiation reduced open field exploratory activity 14, 28, 56, 84, and 168 d after irradiation of KO mice, but had no effect on WT mice. MORRIS WATER MAZE: Radiation adversely affected spatial working memory in the KO mice, but had no discernible effect in the WT mice as assessed 180 d after irradiation. In contrast, irradiated WT mice showed marked impairment of spatial reference memory in comparison to non-irradiated mice, while no effect of radiation was observed in KO mice. CONCLUSIONS: These studies show that apoE expression influences the behavioral toxicity of HZE particle radiation and suggest that apoE plays a role in the repair/recovery from radiation injury of the CNS. ApoE deficiency may exacerbate the previously reported effects of HZE particle radiation in accelerating the brain aging process.


Asunto(s)
Apolipoproteínas E/metabolismo , Conducta Animal/fisiología , Conducta Animal/efectos de la radiación , Iones Pesados , Animales , Conducta Exploratoria/efectos de la radiación , Hierro , Masculino , Aprendizaje por Laberinto/efectos de la radiación , Ratones , Ratones Noqueados , Aceleradores de Partículas , Desempeño Psicomotor/efectos de la radiación
17.
Biol Sci Space ; 17(3): 263-4, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14676408

RESUMEN

To investigate effects of low dose heavy particle radiation to CNS system, we adopted mouse neonatal brain cells in culture being exposed to heavy ions generated by HIMAC at NIRS and BNL. The applied dose varied from 0.05 Gy up to 2.0 Gy. The subsequent biological effects were evaluated by an induction of apoptosis focusing on the dependencies of (1) the animal strains with different radiation sensitivities, and (2) LET with different nuclei. Of the three mouse strains, SCID, B6 and C3H, used for brain cell culture, SCID was the most sensitive and C3H the least sensitive to both X-ray and carbon ion ( 290 MeV/n) as evaluated by 10% apoptotic criterion. However, the sensitivity differences among the strains were much smaller in case of carbon ion comparing to that of X-ray. Regarding the LET dependency, the sensitivity was compared with using C3H and B6 cells between the carbon (13 keV/micrometers) and neon (70 keV/micrometers) ions. Carbon (290 MeV/n) did not give a detectable LET dependency from the criterion whereas the neon (400 MeV/n) showed 1.4 fold difference for both C3H and B6 cells. Although a LET dependency was examined by using the most sensitive SCID cells, no significant difference was detected.


Asunto(s)
Apoptosis , Sistema Nervioso Central/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Iones Pesados , Animales , Animales Recién Nacidos , Encéfalo/citología , Encéfalo/efectos de la radiación , Carbono , Células Cultivadas , Transferencia Lineal de Energía , Ratones , Ratones Endogámicos , Neón , Aceleradores de Partículas , Dosis de Radiación , Tolerancia a Radiación , Efectividad Biológica Relativa
18.
Biol Sci Space ; 18(3): 114-5, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15858347

RESUMEN

To investigate effects of low dose heavy particle radiation to CNS system, we adopted mouse neonatal brain cells in culture being exposed to heavy ions by HIMAC at NIRS and NSRL at BNL. The applied dose varied from 0.05 Gy up to 2.0 Gy. The subsequent biological effects were evaluated by an induction of apoptosis and neuron survival focusing on the dependencies of the animal strains, SCID, B6, B6C3F1, C3H, used for brain cell culture, SCID was the most sensitive and C3H the least sensitive to particle radiation as evaluated by 10% apoptotic criterion. The LET dependency was compared with using SCID and B6 cells exposing to different ions (H, C, Ne, Si, Ar, and Fe). Although no detectable LET dependency was observed in the high LET (55-200 keV/micrometers) and low dose (<0.5 Gy) regions. The survivability profiles of the neurons were different in the mouse strains and ions. In this report, a result of memory and learning function to adult mice after whole-body and brain local irradiation at carbon ion and iron ion.


Asunto(s)
Encéfalo/efectos de la radiación , Iones Pesados , Animales , Apoptosis/efectos de la radiación , Carbono , Supervivencia Celular/efectos de la radiación , Células Cultivadas/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Transferencia Lineal de Energía , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos , Ratones SCID , Neuronas/efectos de la radiación , Aceleradores de Partículas , Dosis de Radiación , Efectividad Biológica Relativa , Rayos X
20.
Radiat Res ; 176(4): 474-85, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21787183

RESUMEN

Ionizing radiation has been implicated in the development of significant cardiovascular complications. Since radiation exposure is associated with space exploration, astronauts are potentially at increased risk of accelerated cardiovascular disease. This study investigated the effect of high atomic number, high-energy (HZE) iron-ion radiation on vascular and endothelial function as a model of space radiation. Rats were exposed to a single whole-body dose of iron-ion radiation at doses of 0, 0.5 or 1 Gy. In vivo aortic stiffness and ex vivo aortic tension responses were measured 6 and 8 months after exposure as indicators of chronic vascular injury. Rats exposed to 1 Gy iron ions demonstrated significantly increased aortic stiffness, as measured by pulse wave velocity. Aortic rings from irradiated rats exhibited impaired endothelial-dependent relaxation consistent with endothelial dysfunction. Acute xanthine oxidase (XO) inhibition or reactive oxygen species (ROS) scavenging restored endothelial-dependent responses to normal. In addition, XO activity was significantly elevated in rat aorta 4 months after whole-body irradiation. Furthermore, XO inhibition, initiated immediately after radiation exposure and continued until euthanasia, completely inhibited radiation-dependent XO activation. ROS production was elevated after 1 Gy irradiation while production of nitric oxide (NO) was significantly impaired. XO inhibition restored NO and ROS production. Finally, dietary XO inhibition preserved normal endothelial function and vascular stiffness after radiation exposure. These results demonstrate that radiation induced XO-dependent ROS production and nitroso-redox imbalance, leading to chronic vascular dysfunction. As a result, XO is a potential target for radioprotection. Enhancing the understanding of vascular radiation injury could lead to the development of effective methods to ameliorate radiation-induced vascular damage.


Asunto(s)
Aorta/patología , Endotelio Vascular/enzimología , Endotelio Vascular/efectos de la radiación , Hierro/efectos adversos , Xantina Oxidasa/metabolismo , Animales , Aorta/efectos de los fármacos , Aorta/efectos de la radiación , Fenómenos Biomecánicos , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Inhibidores Enzimáticos/farmacología , Masculino , Óxido Nítrico/biosíntesis , Oxipurinol/farmacología , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo , Irradiación Corporal Total/efectos adversos , Xantina Oxidasa/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA