Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cardiovasc Diabetol ; 22(1): 37, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36804872

RESUMEN

Diabetes mellitus is one of the prime risk factors for cardiovascular complications and is linked with high morbidity and mortality. Diabetic cardiomyopathy (DCM) often manifests as reduced cardiac contractility, myocardial fibrosis, diastolic dysfunction, and chronic heart failure. Inflammation, changes in calcium (Ca2+) handling and cardiomyocyte loss are often implicated in the development and progression of DCM. Although the existence of DCM was established nearly four decades ago, the exact mechanisms underlying this disease pathophysiology is constantly evolving. Furthermore, the complex pathophysiology of DCM is linked with exosomes, which has recently shown to facilitate intercellular (cell-to-cell) communication through biomolecules such as micro RNA (miRNA), proteins, enzymes, cell surface receptors, growth factors, cytokines, and lipids. Inflammatory response and Ca2+ signaling are interrelated and DCM  has been known to adversely affect many of these signaling molecules either qualitatively and/or quantitatively. In this literature review, we have demonstrated that Ca2+ regulators are tightly controlled at different molecular and cellular levels during various biological processes in the heart. Inflammatory mediators, miRNA and exosomes are shown to interact with these regulators, however how these mediators are linked to Ca2+ handling during DCM pathogenesis remains elusive. Thus, further investigations are needed to understand the mechanisms to restore cardiac Ca2+ homeostasis and function, and to serve as potential therapeutic targets in the treatment of DCM.


Asunto(s)
Calcio , Diabetes Mellitus , Cardiomiopatías Diabéticas , Exosomas , MicroARNs , Humanos , Cardiomiopatías Diabéticas/metabolismo , Exosomas/metabolismo , Inflamación/complicaciones , MicroARNs/genética , Miocitos Cardíacos/metabolismo , Calcio/metabolismo
2.
J Biol Chem ; 295(9): 2676-2686, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31980460

RESUMEN

MS-based metabolomics methods are powerful techniques to map the complex and interconnected metabolic pathways of the heart; however, normalization of metabolite abundance to sample input in heart tissues remains a technical challenge. Herein, we describe an improved GC-MS-based metabolomics workflow that uses insoluble protein-derived glutamate for the normalization of metabolites within each sample and includes normalization to protein-derived amino acids to reduce biological variation and detect small metabolic changes. Moreover, glycogen is measured within the metabolomics workflow. We applied this workflow to study heart metabolism by first comparing two different methods of heart removal: the Langendorff heart method (reverse aortic perfusion) and in situ freezing of mouse heart with a modified tissue freeze-clamp approach. We then used the in situ freezing method to study the effects of acute ß-adrenergic receptor stimulation (through isoproterenol (ISO) treatment) on heart metabolism. Using our workflow and within minutes, ISO reduced the levels of metabolites involved in glycogen metabolism, glycolysis, and the Krebs cycle, but the levels of pentose phosphate pathway metabolites and of many free amino acids remained unchanged. This observation was coupled to a 6-fold increase in phosphorylated adenosine nucleotide abundance. These results support the notion that ISO acutely accelerates oxidative metabolism of glucose to meet the ATP demand required to support increased heart rate and cardiac output. In summary, our MS-based metabolomics workflow enables improved quantification of cardiac metabolites and may also be compatible with other methods such as LC or capillary electrophoresis.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Metabolómica/métodos , Flujo de Trabajo , Animales , Corazón/fisiología , Ratones , Miocardio/metabolismo , Estándares de Referencia
3.
J Biol Chem ; 294(28): 10913-10927, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31147441

RESUMEN

Existing therapies to improve heart function target ß-adrenergic receptor (ß-AR) signaling and Ca2+ handling and often lead to adverse outcomes. This underscores an unmet need for positive inotropes that improve heart function without any adverse effects. The GTPase Ras associated with diabetes (RAD) regulates L-type Ca2+ channel (LTCC) current (ICa,L). Global RAD-knockout mice (gRAD-/-) have elevated Ca2+ handling and increased cardiac hypertrophy, but RAD is expressed also in noncardiac tissues, suggesting the possibility that pathological remodeling is due also to noncardiac effects. Here, we engineered a myocardial-restricted inducible RAD-knockout mouse (RADΔ/Δ). Using an array of methods and techniques, including single-cell electrophysiological and calcium transient recordings, echocardiography, and radiotelemetry monitoring, we found that RAD deficiency results in a sustained increase of inotropy without structural or functional remodeling of the heart. ICa,L was significantly increased, with RAD loss conferring a ß-AR-modulated phenotype on basal ICa,L Cardiomyocytes from RADΔ/Δ hearts exhibited enhanced cytosolic Ca2+ handling, increased contractile function, elevated sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2a) expression, and faster lusitropy. These results argue that myocardial RAD ablation promotes a beneficial elevation in Ca2+ dynamics, which would obviate a need for increased ß-AR signaling to improve cardiac function.


Asunto(s)
Contracción Miocárdica/fisiología , Miocardio/metabolismo , Proteínas ras/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/fisiología , Señalización del Calcio/fisiología , Cardiomegalia/metabolismo , GTP Fosfohidrolasas/metabolismo , Insuficiencia Cardíaca/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Proteínas ras/genética
4.
J Cell Physiol ; 232(11): 2929-2930, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27925191

RESUMEN

Dysbiosis has been implicated in modulation of disease and treatment outcome. It also has been linked to the reproducibility concerns. However, research community needs guidelines on animal models and dysbiosis research to tackle the complexities associated with it. There is a necessity for multi-disciplinary collaborative approach in setting up certain guidelines to hasten the dysbiosis research in a hassle-free manner. J. Cell. Physiol. 232: 2929-2930, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Bacterias/clasificación , Investigación Biomédica/normas , Disbiosis , Microbioma Gastrointestinal , Guías como Asunto , Intestinos/microbiología , Animales , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Bacterias/inmunología , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/inmunología , Interacciones Huésped-Patógeno , Humanos , Intestinos/efectos de los fármacos , Intestinos/inmunología , Modelos Animales , Reproducibilidad de los Resultados
5.
Can J Physiol Pharmacol ; 95(3): 239-246, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27398734

RESUMEN

Although hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular diseases (CVD), there is a debate on whether HHcy is a risk factor or just a biomarker. Interestingly, homocysteine lowering strategies in humans had very little effect on reducing the cardiovascular risk, as compared with animals; this may suggest heterogeneity in human population and epigenetic alterations. Moreover, there are only few studies that suggest the idea that HHcy contributes to CVD in the presence of other risk factors such as inflammation, a known risk factor for CVD. Elevated levels of homocysteine have been shown to contribute to inflammation. Here, we highlight possible relationships between homocysteine, T cell immunity, and hypertension, and summarize the evidence that suggested these factors act together in increasing the risk for CVD. In light of this new evidence, we further propose that there is a need for evaluation of the causes of HHcy, defective remethylation or defective transsulfuration, which may differentially modulate hypertension progression, not just the homocysteine levels.


Asunto(s)
Presión Sanguínea , Homocisteína/sangre , Hiperhomocisteinemia/complicaciones , Hipertensión/etiología , Inmunidad Celular , Linfocitos T/inmunología , Animales , Biomarcadores/sangre , Humanos , Hiperhomocisteinemia/sangre , Hiperhomocisteinemia/inmunología , Hipertensión/sangre , Hipertensión/inmunología , Hipertensión/fisiopatología , Mediadores de Inflamación/sangre , Mediadores de Inflamación/inmunología , Activación de Linfocitos , Pronóstico , Medición de Riesgo , Factores de Riesgo , Transducción de Señal , Linfocitos T/metabolismo , Regulación hacia Arriba
6.
J Mol Cell Cardiol ; 92: 163-173, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-26827898

RESUMEN

AIMS: Although the cardiovascular benefits of exercise are well known, exercise induced effects and mechanisms in prevention of cardiomyopathy are less clear during obesity associated type-2 diabetes. The current study assessed the impact of moderate intensity exercise on diabetic cardiomyopathy by examining cardiac function and structure and mitochondrial function. METHODS: Obese-diabetic (db/db), and lean control (db/+) mice, were subjected to a 5 week, 300 m run on a tread-mill for 5 days/week at the speeds of 10-11 m/min. Various physiological parameters were recorded and the heart function was evaluated with M-mode echocardiography. Contraction parameters and calcium transits were examined on isolated cardiomyocytes. At the molecular level: connexin 43 and 37 (Cx43 and 37) levels, mitochondrial biogenesis regulators: Mfn2 and Drp-1 levels, mitochondrial trans-membrane potential and cytochrome c leakage were assessed through western blotting immunohistochemistry and flow cytometry. Ability of exercise to reverse oxygen consumption rate (OCR), tissue ATP levels, and cardiac fibrosis were also determined. RESULTS: The exercise regimen was able to prevent diabetic cardiac functional deficiencies: ejection fraction (EF) and fractional shortening (FS). Improvements in contraction velocity and contraction maximum were noted with the isolated cardiomyocytes. Restoration of interstitial and micro-vessels associated Cx43 levels and improved gap junction intercellular communication (GJIC) were observed. The decline in the Mfn2/Drp-1 ratio in the db/db mice hearts was prevented after exercise. The exercise regimen further attenuated transmembrane potential decline and cytochrome c leakage. These corrections further led to improvements in OCR and tissue ATP levels and reduction in cardiac fibrosis. CONCLUSIONS: Moderate intensity exercise produced significant cardiovascular benefits by improving mitochondrial function through restoration of Cx43 networks and mitochondrial trans-membrane potential and prevention of excessive mitochondrial fission.


Asunto(s)
Conexina 43/metabolismo , Diabetes Mellitus Tipo 2/terapia , Cardiomiopatías Diabéticas/terapia , Mitocondrias/metabolismo , Condicionamiento Físico Animal , Adenosina Trifosfato/metabolismo , Animales , Conexina 43/genética , Conexinas/genética , Conexinas/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/fisiopatología , Cardiomiopatías Diabéticas/fisiopatología , Humanos , Potencial de la Membrana Mitocondrial/genética , Ratones , Ratones Obesos , Miocitos Cardíacos/metabolismo , Obesidad , Estrés Oxidativo/genética , Consumo de Oxígeno/genética , Proteína alfa-4 de Unión Comunicante
7.
Biochim Biophys Acta ; 1852(5): 732-41, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25615794

RESUMEN

HHcy has been implicated in elderly frailty, but the underlying mechanisms are poorly understood. Using C57 and CBS+/- mice and C2C12 cell line, we investigated mechanisms behind HHcy induced skeletal muscle weakness and fatigability. Possible alterations in metabolic capacity (levels of LDH, CS, MM-CK and COX-IV), in structural proteins (levels of dystrophin) and in mitochondrial function (ATP production) were examined. An exercise regimen was employed to reverse HHcy induced changes. CBS+/- mice exhibited more fatigability, and generated less contraction force. No significant changes in muscle morphology were observed. However, there is a corresponding reduction in large muscle fiber number in CBS+/- mice. Excess fatigability was not due to changes in key enzymes involved in metabolism, but was due to reduced ATP levels. A marginal reduction in dystrophin levels along with a decrease in mitochondrial transcription factor A (mtTFA) were observed. There was also an increase in the mir-31, and mir-494 quantities that were implicated in dystrophin and mtTFA regulation respectively. The molecular changes elevated during HHcy, with the exception of dystrophin levels, were reversed after exercise. In addition, the amount of NRF-1, one of the transcriptional regulators of mtTFA, was significantly decreased. Furthermore, there was enhancement in mir-494 levels and a concomitant decline in mtTFA protein quantity in homocysteine treated cells. These changes in C2C12 cells were also accompanied by an increase in DNMT3a and DNMT3b proteins and global DNA methylation levels. Together, these results suggest that HHcy plays a causal role in enhanced fatigability through mitochondrial dysfunction which involves epigenetic changes.


Asunto(s)
Epigénesis Genética , Hiperhomocisteinemia/fisiopatología , Mitocondrias/metabolismo , Debilidad Muscular/fisiopatología , Músculo Esquelético/fisiopatología , Adenosina Trifosfato/metabolismo , Animales , Western Blotting , Línea Celular , Forma MM de la Creatina-Quinasa/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , ADN Metiltransferasa 3A , Proteínas de Unión al ADN/metabolismo , Femenino , Expresión Génica , Hiperhomocisteinemia/genética , Hiperhomocisteinemia/metabolismo , Técnicas In Vitro , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Proteínas Mitocondriales/metabolismo , Contracción Muscular/genética , Contracción Muscular/fisiología , Debilidad Muscular/genética , Debilidad Muscular/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Factor Nuclear 1 de Respiración/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Natación , Factores de Transcripción/metabolismo , ADN Metiltransferasa 3B
8.
Am J Physiol Heart Circ Physiol ; 309(2): H325-34, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25980021

RESUMEN

Chronic failure in maintenance and regeneration of skeletal muscles leads to lower muscle mass (sarcopenia), muscle weakness, and poor response to injury. Evidence suggests that aberrant p38 MAPK signaling undermines the repair process after injury in aged mice. Previous studies have shown that hyperhomocysteinemia (HHcy) has been associated with muscle weakness and lower than normal body weights. However, whether or not HHcy condition also compromises skeletal muscle regenerative capabilities is not clear. In the current study, we show that CBS-/+ mice, a model for HHcy condition, exhibited compromised regenerative function and cell proliferation upon injury. However, there was no significant difference in Pax7 expression levels in the satellite cells from CBS-/+ mouse skeletal muscles. Interestingly, the satellite cells from CBS-/+ mice not only exhibited diminished in vitro proliferative capabilities, but also there was heightened oxidative stress. In addition, there was enhanced p38 MAPK activation as well as p16 and p21 expression in the CBS-/+ mouse satellite cells. Moreover, the C2C12 myoblasts also exhibited higher p38 MAPK activation and p16 expression upon treatment with homocysteine in addition to enhanced ROS presence. Tissue engraftment potential and regeneration after injury were restored to some extent upon treatment with the p38-MAPK inhibitor, SB203580, in the CBS-/+ mice. These results together suggest that HHcy-induced diminished satellite cell proliferation involves excessive oxidative stress and p38 MAPK signaling. Our study further proposes that HHcy is a potential risk factor for elderly frailty, and need to be considered as a therapeutic target while designing the alleviation interventions/postinjury rehabilitation measures for adults with HHcy.


Asunto(s)
Proliferación Celular , Hiperhomocisteinemia/enzimología , Sistema de Señalización de MAP Quinasas , Músculo Esquelético/enzimología , Regeneración , Células Satélite del Músculo Esquelético/enzimología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Línea Celular , Cistationina betasintasa/deficiencia , Cistationina betasintasa/genética , Modelos Animales de Enfermedad , Activación Enzimática , Hiperhomocisteinemia/genética , Hiperhomocisteinemia/patología , Hiperhomocisteinemia/fisiopatología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Estrés Oxidativo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Sarcopenia/enzimología , Sarcopenia/patología , Sarcopenia/fisiopatología , Células Satélite del Músculo Esquelético/efectos de los fármacos , Células Satélite del Músculo Esquelético/patología , Células Satélite del Músculo Esquelético/trasplante , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
9.
Nitric Oxide ; 46: 66-71, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25461301

RESUMEN

Hydrogen sulfide (H2S) is a novel endogenous gaseous signal transducer (gasotransmitter). Its emerging role in multiple facets of inter- and intra-cellular signaling as a metabolic, inflammatory, neuro and vascular modulator has been increasingly realized. Although H2S is known for its effects as an anti-hypertensive, anti-inflammatory and anti-oxidant molecule, the relevance of these effects in skeletal muscle biology during health and during metabolic syndromes is unclear. H2S has been implicated in vascular relaxation and vessel tone enhancement, which might lead to mitigation of vascular complications caused by the metabolic syndromes. Metabolic complications may also lead to mitochondrial remodeling by interfering with fusion and fission, therefore, leading to mitochondrial mitophagy and skeletal muscle myopathy. Mitochondrial protection by H2S enhancing treatments may mitigate deterioration of muscle function during metabolic syndromes. In addition, H2S might upregulate uncoupling proteins and might also cause browning of white fat, resulting in suppression of imbalanced cytokine signaling caused by abnormal fat accumulation. Likewise, as a source for H(+) ions, it has the potential to augment anaerobic ATP synthesis. However, there is a need for studies to test these putative H2S benefits in different patho-physiological scenarios before its full-fledged usage as a therapeutic molecule. The present review highlights current knowledge with regard to exogenous and endogenous H2S roles in skeletal muscle biology, metabolism, exercise physiology and related metabolic disorders, such as diabetes and obesity, and also provides future directions.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Músculo Esquelético/fisiología , Animales , Humanos , Músculo Esquelético/metabolismo
10.
Can J Physiol Pharmacol ; 93(7): 577-84, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26118387

RESUMEN

INTRODUCTION: Hyperhomocysteinemia (HHcy) is associated with inflammatory diseases and is known to increase the production of reactive oxygen species (ROS), matrix metalloproteinase (MMP)-9, and inducible nitric oxide synthase, and to decrease endothelial nitric oxide production. However, the impact of HHcy on macrophage phenotype differentiation is not well-established. It has been documented that macrophages have 2 distinct phenotypes: the "classically activated/destructive" (M1), and the "alternatively activated/constructive" (M2) subtypes. We hypothesize that HHcy increases M1 macrophage differentiation through extracellular matrix metalloproteinase inducer (EMMPRIN), a known inducer of matrix metalloproteinases. METHODS: murine J774A.1 and Raw 264.7 macrophages were treated with 100 and 500 µmol/L Hcy, respectively, for 24 h. Samples were analyzed using Western blotting and immunocytochemistry. RESULTS: Homocysteine treatment increased cluster of differentiation 40 (CD40; M1 marker) in J774A.1 and Raw 264.7 macrophages. MMP-9 was induced in both cell lines. EMMPRIN protein expression was also increased in both cell lines. Blocking EMMPRIN function by pre-treating cells with anti-EMMPRIN antibody, with or without Hcy, resulted in significantly lower expression of CD40 in both cell lines by comparison with the controls. A DCFDA assay demonstrated increased ROS production in both cell lines with Hcy treatment when compared with the controls. CONCLUSION: Our results suggest that HHcy results in an increase of the M1 macrophage phenotype. This effect seems to be at least partially mediated by EMMPRIN induction.


Asunto(s)
Basigina/biosíntesis , Diferenciación Celular/efectos de los fármacos , Homocisteína/farmacología , Macrófagos/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Western Blotting , Antígenos CD40/biosíntesis , Técnicas de Cultivo de Célula , Línea Celular , Relación Dosis-Respuesta a Droga , Inmunohistoquímica , Macrófagos/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Transducción de Señal
11.
Can J Physiol Pharmacol ; 93(9): 755-63, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26176406

RESUMEN

Paraoxanase-1 (PON1) is an HDL-associated enzyme that contributes to the antioxidant and antiatherosclerotic properties of HDL. Lack of PON1 results in dysfunctional HDL. HHcy is a risk factor for cardiovascular disorders, and instigates vascular dysfunction and ECM remodeling. Although studies have reported HHcy during atherosclerosis, the exact mechanism is unclear. Here, we hypothesize that dysfunctional HDL due to lack of PON1 contributes to endothelial impairment and atherogenesis through HHcy-induced ECM re-modeling. To verify this hypothesis, we used C57BL6/J and PON1 knockout mice (KO) and fed them an atherogenic diet. The expression of Akt, ADMA, and DDAH, as well as endothelial gap junction proteins such as Cx-37 and Cx-40 and eNOS was measured for vascular dysfunction and inflammation. We observed that cardiac function was decreased and plasma Hcy levels were increased in PON1 KO mice fed the atherogenic diet compared with the controls. Expression of Akt, eNOS, DDAH, Cx-37, and Cx-40 was decreased, and the expression of MMP-9 and ADMA was increased in PON1 KO mice fed an atherogenic diet compared with the controls. Our results suggest that HHcy plays an intricate role in dysfunctional HDL, owing to the lack of PON1. This contributes to vascular endothelial impairment and atherosclerosis through MMP-9-induced vascular remodeling.


Asunto(s)
Arildialquilfosfatasa/metabolismo , Aterosclerosis/fisiopatología , Hiperhomocisteinemia/sangre , Lipoproteínas HDL/sangre , Amidohidrolasas/biosíntesis , Animales , Arginina/análogos & derivados , Arginina/biosíntesis , Arildialquilfosfatasa/deficiencia , Arildialquilfosfatasa/genética , Aterosclerosis/sangre , Aterosclerosis/genética , Aterosclerosis/patología , Presión Sanguínea/genética , Presión Sanguínea/fisiología , Conexinas/biosíntesis , Dieta Aterogénica , Endotelio Vascular/metabolismo , Fibrosis/inducido químicamente , Fibrosis/patología , Masculino , Metaloproteinasa 9 de la Matriz/biosíntesis , Ratones , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo III/biosíntesis , Proteínas Proto-Oncogénicas c-akt/biosíntesis , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/fisiopatología , Proteína alfa-5 de Unión Comunicante , Proteína alfa-4 de Unión Comunicante
12.
Int J Mol Sci ; 16(1): 1252-65, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25608649

RESUMEN

Although hyperhomocysteinemia (HHcy) elicits lower than normal body weights and skeletal muscle weakness, the mechanisms remain unclear. Despite the fact that HHcy-mediated enhancement in ROS and consequent damage to regulators of different cellular processes is relatively well established in other organs, the nature of such events is unknown in skeletal muscles. Previously, we reported that HHcy attenuation of PGC-1α and HIF-1α levels enhanced the likelihood of muscle atrophy and declined function after ischemia. In the current study, we examined muscle levels of homocysteine (Hcy) metabolizing enzymes, anti-oxidant capacity and focused on protein modifications that might compromise PGC-1α function during ischemic angiogenesis. Although skeletal muscles express the key enzyme (MTHFR) that participates in re-methylation of Hcy into methionine, lack of trans-sulfuration enzymes (CBS and CSE) make skeletal muscles more susceptible to the HHcy-induced myopathy. Our study indicates that elevated Hcy levels in the CBS-/+ mouse skeletal muscles caused diminished anti-oxidant capacity and contributed to enhanced total protein as well as PGC-1α specific nitrotyrosylation after ischemia. Furthermore, in the presence of NO donor SNP, either homocysteine (Hcy) or its cyclized version, Hcy thiolactone, not only increased PGC-1α specific protein nitrotyrosylation but also reduced its association with PPARγ in C2C12 cells. Altogether these results suggest that HHcy exerts its myopathic effects via reduction of the PGC-1/PPARγ axis after ischemia.


Asunto(s)
Cistationina betasintasa/metabolismo , Hiperhomocisteinemia/patología , Isquemia/patología , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/patología , Enfermedades Musculares/enzimología , Enfermedades Musculares/patología , Animales , Antioxidantes/metabolismo , Western Blotting , Modelos Animales de Enfermedad , Homocisteína/metabolismo , Homocisteína/farmacología , Hiperhomocisteinemia/complicaciones , Hiperhomocisteinemia/enzimología , Isquemia/complicaciones , Isquemia/enzimología , Ratones Endogámicos C57BL , Modelos Biológicos , Músculo Esquelético/efectos de los fármacos , Donantes de Óxido Nítrico/farmacología , PPAR gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Unión Proteica/efectos de los fármacos , Factores de Transcripción/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
13.
Am J Physiol Heart Circ Physiol ; 306(8): H1116-27, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24585779

RESUMEN

Hyperhomocysteinemia (HHcy) is associated with elderly frailty, skeletal muscle injury and malfunction, reduced vascular integrity and function, and mortality. Although HHcy has been implicated in the impairment of angiogenesis after hindlimb ischemia in murine models, the underlying mechanisms are still unclear. We hypothesized that HHcy compromises skeletal muscle perfusion, collateral formation, and arteriogenesis by diminishing postischemic vasculogenic responses in muscle fibers. To test this hypothesis, we created femoral artery ligation in wild-type and heterozygous cystathionine ß-synthase (CBS(+/-)) mice (a model for HHcy) and assessed tissue perfusion, collateral vessel formation, and skeletal muscle function using laser-Doppler perfusion imaging, barium angiography, and fatigue tests. In addition, we assessed postischemic levels of VEGF and levels of its muscle-specific regulators: hypoxia-inducible factor (HIF)-1α and peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α. The observations indicated dysregulation of VEGF, HIF-1α, and PGC-1α levels in ischemic skeletal muscles of CBS(+/-) mice. Concomitant with the reduced ischemic angiogenic responses, we also observed diminished leptin expression and attenuated Akt signaling in ischemic muscle fibers of CBS(+/-) mice. Moreover, there was enhanced atrogene, ubiquitin ligases that conjugate proteins for degradation during muscle atrophy, transcription, and reduced muscle function after ischemia in CBS(+/-) mice. These results suggest that HHcy adversely affects muscle-specific ischemic responses and contributes to muscle frailty.


Asunto(s)
Miembro Posterior/irrigación sanguínea , Hiperhomocisteinemia/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Isquemia/fisiopatología , Neovascularización Fisiológica/fisiología , Factores de Transcripción/metabolismo , Animales , Conducta Animal , Cistationina betasintasa/deficiencia , Cistationina betasintasa/genética , Arteria Femoral/cirugía , Expresión Génica , Ligadura , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Musculares/genética , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/química , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Natación , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/genética , Factor A de Crecimiento Endotelial Vascular
14.
Can J Physiol Pharmacol ; 92(7): 575-82, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24923386

RESUMEN

Regular exercise is a great medicine with its benefits encompassing everything from prevention of cardiovascular risk to alleviation of different muscular myopathies. Interestingly, elevated levels of homocysteine (Hcy), also known as hyperhomocysteinemia (HHcy), antagonizes beta-2 adrenergic receptors (ß2AR), gamma amino butyric acid (GABA), and peroxisome proliferator-activated receptor-gamma (PPARγ) receptors. HHcy also stimulates an elevation of the M1/M2 macrophage ratio, resulting in a more inflammatory profile. In this review we discuss several potential targets altered by HHcy that result in myopathy and excessive fat accumulation. Several of these HHcy mediated changes can be countered by exercise and culminate into mitigation of HHcy induced myopathy and metabolic syndrome. We suggest that exercise directly impacts levels of Hcy, matrix metalloproteinase 9 (MMP-9), macrophages, and G-protein coupled receptors (GPCRs, especially Gs). While HHcy promotes the M1 macrophage phenotype, it appears that exercise may diminish the M1/M2 ratio, resulting in a less inflammatory phenotype. HHcy through its influence on GPCRs, specifically ß2AR, PPARγ and GABA receptors, promotes accumulation of white fat, whereas exercise enhances the browning of white fat and counters HHcy-mediated effects on GPCRs. Alleviation of HHcy-associated pathologies with exercise also includes reversal of excessive MMP-9 activation. Moreover, exercise, by reducing plasma Hcy levels, may prevent skeletal muscle myopathy, improve exercise capacity and rescue the obese phenotype. The purpose of this review is to summarize the pathological conditions surrounding HHcy and to clarify the importance of regular exercise as a method of disease prevention.


Asunto(s)
Adipocitos Blancos/metabolismo , Ejercicio Físico , Hiperhomocisteinemia/metabolismo , Hiperhomocisteinemia/patología , Macrófagos/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Músculo Esquelético/metabolismo , Animales , Humanos , Hiperhomocisteinemia/complicaciones , Inflamación/metabolismo , Síndrome Metabólico/etiología , Síndrome Metabólico/prevención & control , Enfermedades Musculares/etiología , Enfermedades Musculares/prevención & control , Receptores Acoplados a Proteínas G/metabolismo
15.
Can J Physiol Pharmacol ; 92(7): 583-91, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24905188

RESUMEN

Therapeutic approaches for cardiac regenerative mechanisms have been explored over the past decade to target various cardiovascular diseases (CVD). Structural and functional aberrations of mitochondria have been observed in CVD. The significance of mitochondrial maturation and function in cardiomyocytes is distinguished by their attribution to embryonic stem cell differentiation into adult cardiomyocytes. An abnormal fission process has been implicated in heart failure, and treatment with mitochondrial division inhibitor 1 (Mdivi-1), a specific inhibitor of dynamin related protein-1 (Drp-1), has been shown to improve cardiac function. We recently observed that the ratio of mitofusin 2 (Mfn2; a fusion protein) and Drp-1 (a fission protein) was decreased during heart failure, suggesting increased mitophagy. Treatment with Mdivi-1 improved cardiac function by normalizing this ratio. Aberrant mitophagy and enhanced oxidative stress in the mitochondria contribute to abnormal activation of MMP-9, leading to degradation of the important gap junction protein connexin-43 (Cx-43) in the ventricular myocardium. Reduced Cx-43 levels were associated with increased fibrosis and ventricular dysfunction in heart failure. Treatment with Mdivi-1 restored MMP-9 and Cx-43 expression towards normal. In this review, we discuss mitochondrial dynamics, its relation to MMP-9 and Cx-43, and the therapeutic role of fission inhibition in heart failure.


Asunto(s)
GTP Fosfohidrolasas/genética , Insuficiencia Cardíaca/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Mitocondriales/genética , Animales , Conexina 43/metabolismo , Dinaminas , GTP Fosfohidrolasas/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Humanos , Metaloproteinasa 9 de la Matriz/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Quinazolinonas/farmacología , Quinazolinonas/uso terapéutico
16.
Cell Mol Biol Lett ; 18(3): 355-67, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23793845

RESUMEN

Prostate cancer is one of the main cancers that affect men, especially older men. Though there has been considerable progress in understanding the progression of prostate cancer, the drivers of its development need to be studied more comprehensively. The emergence of resistant forms has also increased the clinical challenges involved in the treatment of prostate cancer. Recent evidence has suggested that inflammation might play an important role at various stages of cancer development. This review focuses on inflammasome research that is relevant to prostate cancer and indicates future avenues of study into its effective prevention and treatment through inflammasome regulation. With regard to prostate cancer, such research is still in its early stages. Further study is certainly necessary to gain a broader understanding of prostate cancer development and to create successful therapy solutions.


Asunto(s)
Caspasa 1/inmunología , Inflamasomas/inmunología , Interleucina-18/inmunología , Interleucina-1beta/inmunología , Neoplasias de la Próstata/inmunología , Caspasa 1/metabolismo , Progresión de la Enfermedad , Humanos , Inflamasomas/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Masculino , Modelos Inmunológicos , Metástasis de la Neoplasia , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología
17.
Int J Mol Sci ; 14(7): 15074-91, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23873298

RESUMEN

Hyperhomocysteinemia (HHcy) is a systemic medical condition and has been attributed to multi-organ pathologies. Genetic, nutritional, hormonal, age and gender differences are involved in abnormal homocysteine (Hcy) metabolism that produces HHcy. Homocysteine is an intermediate for many key processes such as cellular methylation and cellular antioxidant potential and imbalances in Hcy production and/or catabolism impacts gene expression and cell signaling including GPCR signaling. Furthermore, HHcy might damage the vagus nerve and superior cervical ganglion and affects various GPCR functions; therefore it can impair both the parasympathetic and sympathetic regulation in the blood vessels of skeletal muscle and affect long-term muscle function. Understanding cellular targets of Hcy during HHcy in different contexts and its role either as a primary risk factor or as an aggravator of certain disease conditions would provide better interventions. In this review we have provided recent Hcy mediated mechanistic insights into different diseases and presented potential implications in the context of reduced muscle function and integrity. Overall, the impact of HHcy in various skeletal muscle malfunctions is underappreciated; future studies in this area will provide deeper insights and improve our understanding of the association between HHcy and diminished physical function.


Asunto(s)
Homocisteína/metabolismo , Hiperhomocisteinemia/fisiopatología , Músculo Esquelético/metabolismo , Estrés del Retículo Endoplásmico , Humanos , Hiperhomocisteinemia/metabolismo , Metilación , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
18.
Dev Biol ; 360(2): 351-7, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22020250

RESUMEN

The serine/threonine kinase LKB1 is a master kinase that regulates a number of critical events such as cell transformation, polarization, development, stress response, and energy metabolism in metazoa. After multiple unsuccessful attempts of generating Dictyostelium lkb1-null cells, an RNAi-based knockdown approach proved effective. Depletion of lkb1 with a knockdown construct displayed severe reduction in prespore cell differentiation and precocious induction of prestalk cells, which were reminiscent of cells lacking GSK3. Similar to gsk3(-) cells, lkb1 depleted cells displayed lower GSK3 activity than wild type cells during development and compromised cAMP-mediated inhibition of the DIF-1 mediated ecmB induction. In response to stress insult, the kinase activity of LKB1, but not that of GSK3, increased. Therefore, LKB1 positively functions at the upstream of GSK3 during development and responds to stress insults independently from GSK3.


Asunto(s)
Dictyostelium/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Protozoarias/genética , Secuencia de Aminoácidos , Diferenciación Celular , AMP Cíclico/metabolismo , Dictyostelium/citología , Dictyostelium/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Datos de Secuencia Molecular , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Protozoarias/metabolismo , Interferencia de ARN , Estrés Fisiológico
19.
J Biol Chem ; 285(4): 2318-25, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-19948722

RESUMEN

Phosphorylation-dependent ubiquitination and ensuing down-regulation and lysosomal degradation of the interferon alpha/beta receptor chain 1 (IFNAR1) of the receptor for Type I interferons play important roles in limiting the cellular responses to these cytokines. These events could be stimulated either by the ligands (in a Janus kinase-dependent manner) or by unfolded protein response (UPR) inducers including viral infection (in a manner dependent on the activity of pancreatic endoplasmic reticulum kinase). Both ligand-dependent and -independent pathways converge on phosphorylation of Ser(535) within the IFNAR1 degron leading to recruitment of beta-Trcp E3 ubiquitin ligase and concomitant ubiquitination and degradation. Casein kinase 1 alpha (CK1 alpha) was shown to directly phosphorylate Ser(535) within the ligand-independent pathway. Yet given the constitutive activity of CK1 alpha, it remained unclear how this pathway is stimulated by UPR. Here we report that induction of UPR promotes the phosphorylation of a proximal residue, Ser(532), in a pancreatic endoplasmic reticulum kinase-dependent manner. This serine serves as a priming site that promotes subsequent phosphorylation of IFNAR1 within its degron by CK1 alpha. These events play an important role in regulating ubiquitination and degradation of IFNAR1 as well as the extent of Type I interferon signaling.


Asunto(s)
Receptor de Interferón alfa y beta/metabolismo , Transducción de Señal/fisiología , Ubiquitinación/fisiología , Secuencia de Aminoácidos , Animales , Quinasa de la Caseína I/metabolismo , Secuencia Conservada , Fibroblastos/citología , Células HeLa , Humanos , Factores Inmunológicos/metabolismo , Factores Inmunológicos/farmacología , Interferón-alfa/metabolismo , Interferón-alfa/farmacología , Interferón beta/metabolismo , Interferón beta/farmacología , Ligandos , Ratones , Datos de Secuencia Molecular , Fosforilación/fisiología , Receptor de Interferón alfa y beta/genética , Transducción de Señal/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Respuesta de Proteína Desplegada/fisiología , eIF-2 Quinasa/metabolismo
20.
Eukaryot Cell ; 7(6): 958-66, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18408056

RESUMEN

The novel Dictyostelium phosphatase MPL1 contains six leucine-rich repeats at the amino-terminal end and a phosphatase domain at the carboxyl end. Similarly architectured phosphatases exist among other protozoa, such as Entamoeba histolytica, Leishmania major, and Trypanosoma cruzi. MPL1 was strongly induced after 5 h of development; ablation by homologous recombination led to defective streaming and aggregation during development. In addition, cyclic AMP (cAMP)-pulsed mpl1(-) cells showed reduced random and directional motility. At the molecular level, mpl1(-) cells displayed higher prestimulus and persistent poststimulus ERK2 phosphorylation in response to cAMP stimulation. Consistent with their phenotype of persistent ERK2 phosphorylation, mpl1(-) cells also displayed an aberrant pattern of cAMP production, resembling that of the regA(-) cells. Reintroduction of a full-length MPL1 into mpl1(-) cells restored aggregation, ERK2 regulation, random and directional motility, and cAMP production similar to wild-type cells. We propose that MPL1 is a novel phosphatase essential for proper regulation of ERK2 phosphorylation and optimal motility during development.


Asunto(s)
Dictyostelium/enzimología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Secuencia de Aminoácidos , Animales , Dictyostelium/citología , Dictyostelium/fisiología , Eucariontes/enzimología , Datos de Secuencia Molecular , Movimiento , Fosforilación , Estructura Terciaria de Proteína , Proteínas Protozoarias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA