Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Physiol ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985827

RESUMEN

Fetal growth restriction (FGR) is a common outcome in human suboptimal gestation and is related to prenatal origins of cardiovascular dysfunction in offspring. Despite this, therapy of human translational potential has not been identified. Using human umbilical and placental vessels and the chicken embryo model, we combined cellular, molecular, and functional studies to determine whether N-acetylcysteine (NAC) and hydrogen sulphide (H2S) protect cardiovascular function in growth-restricted unborn offspring. In human umbilical and placental arteries from control or FGR pregnancy and in vessels from near-term chicken embryos incubated under normoxic or hypoxic conditions, we determined the expression of the H2S gene CTH (i.e. cystathionine γ-lyase) (via quantitative PCR), the production of H2S (enzymatic activity), the DNA methylation profile (pyrosequencing) and vasodilator reactivity (wire myography) in the presence and absence of NAC treatment. The data show that FGR and hypoxia increased CTH expression in the embryonic/fetal vasculature in both species. NAC treatment increased aortic CTH expression and H2S production and enhanced third-order femoral artery dilator responses to the H2S donor sodium hydrosulphide in chicken embryos. NAC treatment also restored impaired endothelial relaxation in human third-to-fourth order chorionic arteries from FGR pregnancies and in third-order femoral arteries from hypoxic chicken embryos. This NAC-induced protection against endothelial dysfunction in hypoxic chicken embryos was mediated via nitric oxide independent mechanisms. Both developmental hypoxia and NAC promoted vascular changes in CTH DNA and NOS3 methylation patterns in chicken embryos. Combined, therefore, the data support that the effects of NAC and H2S offer a powerful mechanism of human translational potential against fetal cardiovascular dysfunction in complicated pregnancy. KEY POINTS: Gestation complicated by chronic fetal hypoxia and fetal growth restriction (FGR) increases a prenatal origin of cardiovascular disease in offspring, increasing interest in antenatal therapy to prevent against a fetal origin of cardiovascular dysfunction. We investigated the effects between N-acetylcysteine (NAC) and hydrogen sulphide (H2S) in the vasculature in FGR human pregnancy and in chronically hypoxic chicken embryos. Combining cellular, molecular, epigenetic and functional studies, we show that the vascular expression and synthesis of H2S is enhanced in hypoxic and FGR unborn offspring in both species and this acts to protect their vasculature. Therefore, the NAC/H2S pathway offers a powerful therapeutic mechanism of human translational potential against fetal cardiovascular dysfunction in complicated pregnancy.

2.
Ocul Immunol Inflamm ; : 1-13, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38194442

RESUMEN

In pregnancy, a plethora of factors causes changes in maternal immunity. Uveitis flare-ups are more frequent in the first trimester and in undertreated patients. Management of non-infectious uveitis during pregnancy remains understudied. A bibliographic review to consolidate existing evidence was performed by a multidisciplinary group of Ophthalmologists, Gynaecologists and Rheumatologists. Our group recommends initial management with minimum-required doses of corticosteroids, preferably locally, to treat intraocular inflammation whilst ensuring good neonatal outcomes. If ineffective, clinicians should consider addition of Cyclosporine, Azathioprine or Certolizumab pegol, which are seemingly safe in pregnancy. Other therapies (such as Methotrexate, Mycophenolate Mofetil and alkylating agents) are teratogenic or have a detrimental effect on the foetus. Furthermore, careful multidisciplinary preconception discussions and close follow-up are recommended, monitoring for flare-ups and actively tapering medication doses, with a primary endpoint focused on protecting ocular tissues from inflammation, whilst giving minimal risk of poor pregnancy and foetal outcomes.

3.
Placenta ; 142: 75-84, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37651852

RESUMEN

INTRODUCTION: Maternal obesity alters the immune function in the offspring. We hypothesize that maternal obesity and pro-inflammatory pathways induce leptin-related genes in neonatal monocytes, whereby high leptin levels enhance their inflammatory response. METHODS: Transcriptional profiles of cord blood leukocytes (CBL) in basal and pro-inflammatory conditions were studied to determine differentially expressed genes (DEG). The DNA methylation profile of CB monocytes (CBM) of neonates born to control BMI mothers and women with obesity was assayed to identify differentially methylated probes (DMP). CBM-derived macrophages were cultured with or without leptin (10-100 ng/ml) and then stimulated with lipopolysaccharide (LPS, 100 ng/ml) and interferon-gamma (20 ng/ml) to assess the induction of TNF-α and IL-10 transcripts. RESULTS: CBL from pregnancies with obesity (CBL-Ob) showed 12,183 DEG, affecting 49 out of 78 from the leptin pathway. Control CBM exposed to LPS showed 45 leptin-related DEG, an effect prevented by the co-exposure to LPS and IL-10. Conversely, CBM-Ob showed 5279 DMP enriched in insulin- and leptin-related genes, and Lasso regression of leptin-related DMP showed high predictive value for plasma leptin levels (r2 = 0.9897) and maternal BMI categories (AUC = 1). Chronic exposure to leptin increased TNF-α and decreased IL-10 levels in control BMI samples but not in Ob-CBM. Enhanced TNF-α induction after proinflammatory stimulation was observed in leptin-treated control BMI samples. DISCUSSION: Obesity in pregnancy is associated with a distinctive expression and DNA methylation profile of leptin-related genes in cord blood monocytes, meanwhile, leptin enhances the expression of pro-inflammatory cytokines upon stimulation with M1-skewing agents.

4.
iScience ; 24(6): 102675, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34222842

RESUMEN

Whether arterial-venous differences of primary endothelial cells commonly used for vascular research are preserved in vitro remains under debate. To address this issue, a meta-analysis of Affymetrix transcriptomic data sets from human umbilical artery (HUAECs) and vein (HUVEC) endothelial cells was performed. The meta-analysis showed 2,742 transcripts differentially expressed (false discovery rate <0.05), of which 78% were downregulated in HUVECs. Comparisons with RNA-seq data sets showed high levels of agreement and correlation (p < 0.0001), identifying 84 arterial-venous identity markers. Functional analysis revealed enrichment of key vascular processes in HUAECs/HUVECs, including nitric oxide- (NO) and hypoxia-related genes, as well as differences in miRNA- and ncRNA-mRNA interaction profiles. A proof of concept of these findings in primary cells exposed to hypoxia in vitro and in vivo confirmed the arterial-venous differences in NO-related genes and miRNAs. Altogether, these data defined a cross-platform arterial-venous transcript profile for cultured HUAEC-HUVEC and support a preserved identity involving key vascular pathways post-transcriptionally regulated in vitro.

5.
J Dev Orig Health Dis ; 12(5): 768-779, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33308369

RESUMEN

Adverse childhood experiences (ACEs) are associated with a high risk of developing chronic diseases and decreased life expectancy, but no ACE epigenetic biomarkers have been identified until now. The latter may result from the interaction of multiple factors such as age, sex, degree of adversity, and lack of transcriptional effects of DNA methylation changes. We hypothesize that DNA methylation changes are related to childhood adversity levels and current age, and these markers evolve as aging proceeds. Two Gene Expression Omnibus datasets, regarding ACE, were selected (GSE72680 and GSE70603), considering raw- and meta-data availability, including validated ACE index (Childhood Trauma Questionnaire (CTQ) score). For DNA methylation, analyzed probes were restricted to those laying within promoters and first exons, and samples were grouped by CTQ scores terciles, to compare highly (ACE) with non-abused (control) cases. Comparison of control and ACE methylome profile did not retrieve differentially methylated CpG sites (DMCs) after correcting by false discovery rate < 0.05, and this was also observed when samples were separated by sex. In contrast, grouping by decade age ranges (i.e., the 20s, 30s, 40s, and 50s) showed a progressive increase in the number of DMCs and the intensity of changes, mainly related with hypomethylation. Comparison with transcriptome data for ACE subjects in the 40s, and 50s showed a similar age-dependent effect. This study provides evidence that epigenetic markers of ACE are age-dependent, but not defined in the long term. These differences among early, middle, and late adulthood epigenomic profiles suggest a window for interventions aimed to prevent the detrimental effects of ACE.


Asunto(s)
Experiencias Adversas de la Infancia/clasificación , Envejecimiento/psicología , Metilación de ADN/fisiología , Factores de Tiempo , Adulto , Epigénesis Genética/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad
6.
Front Cell Dev Biol ; 9: 658514, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34041239

RESUMEN

miRNAs, one of the members of the noncoding RNA family, are regulators of gene expression in inflammatory and autoimmune diseases. Changes in miRNA pool expression have been associated with differentiation of CD4+ T cells toward an inflammatory phenotype and with loss of self-tolerance in autoimmune diseases. Vogt-Koyanagi-Harada (VKH) disease is a chronic multisystemic pathology, affecting the uvea, inner ear, central nervous system, and skin. Several lines of evidence support an autoimmune etiology for VKH, with loss of tolerance against retinal pigmented epithelium-related self-antigens. This deleterious reaction is characterized by exacerbated inflammation, due to an aberrant T H 1 and T H 17 polarization and secretion of their proinflammatory hallmark cytokines interleukin 6 (IL-6), IL-17, interferon γ, and tumor necrosis factor α, and an impaired CD4+ CD25 high FoxP3+ regulatory T cell function. To restrain inflammation, VKH is pharmacologically treated with corticosteroids and immunosuppressive drugs as first and second line of therapy, respectively. Changes in the expression of miRNAs related to immunoregulatory pathways have been associated with VKH development, whereas some genetic variants of miRNAs have been found to be risk modifiers of VKH. Furthermore, the drugs commonly used in VKH treatment have great influence on miRNA expression, including those miRNAs associated to VKH disease. This relationship between response to therapy and miRNA regulation suggests that these small noncoding molecules might be therapeutic targets for the development of more effective and specific pharmacological therapy for VKH. In this review, we discuss the latest evidence regarding regulation and alteration of miRNA associated with VKH disease and its treatment.

7.
Epigenomics ; 12(22): 1999-2018, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33275450

RESUMEN

Aim: To determine changes in global DNA methylation in monocytes from neonates of women with obesity, as markers of an immune programming resulting from maternal obesity. Materials & methods: Cord blood monocytes were obtained from neonates born to women with obesity and normal weight, genome-wide differentially methylated CpGs were determined using an Infinium MethylationEPIC-BeadChip (850K). Results: No clustering of samples according to maternal BMI was observed, but sex-specific analysis revealed 71,728 differentially methylated CpGs in female neonates from women with obesity (p < 0.01). DAVID analysis showed increased methylation levels within genes involved in the innate immune response and inflammation. Conclusion: Maternal obesity induces, in a sex-specific manner, an epigenetic programming of monocytes that could contribute to disease later in life. Clinical trial registry: This study is registered in ClinicalTrials.gov NCT02903134.


Asunto(s)
Epigénesis Genética , Monocitos/metabolismo , Obesidad Materna , Adolescente , Adulto , Células Cultivadas , Islas de CpG , Metilación de ADN , Femenino , Humanos , Inmunidad Innata/genética , Recién Nacido , Mediadores de Inflamación/sangre , Masculino , Embarazo , Caracteres Sexuales , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA