RESUMEN
The endocannabinoid (eCB) 2-arachidonoyl-gycerol (2-AG) modulates immune responses by activating cannabinoid receptors or through its multiple metabolites, notably eicosanoids. Thus, 2-AG hydrolysis inhibition might represent an interesting anti-inflammatory strategy that would simultaneously increase the levels of 2-AG and decrease those of eicosanoids. Accordingly, 2-AG hydrolysis inhibition increased 2-AG half-life in neutrophils. Under such setting, neutrophils, eosinophils, and monocytes synthesized large amounts of 2-AG and other monoacylglycerols (MAGs) in response to arachidonic acid (AA) and other unsaturated fatty acids (UFAs). Arachidonic acid and UFAs were ~1000-fold more potent than G protein-coupled receptor (GPCR) agonists. Triascin C and thimerosal, which, respectively, inhibit fatty acyl-CoA synthases and acyl-CoA transferases, prevented the UFA-induced MAG biosynthesis, implying glycerolipid remodeling. 2-AG and other MAG biosynthesis was preceded by that of the corresponding lysophosphatidic acid (LPA). However, we could not directly implicate LPA dephosphorylation in MAG biosynthesis. While GPCR agonists poorly induced 2-AG biosynthesis, they inhibited that induced by AA by 25%-50%, suggesting that 2-AG biosynthesis is decreased when leukocytes are surrounded by a pro-inflammatory entourage. Our data strongly indicate that human leukocytes use AA and UFAs to biosynthesize biologically significant concentrations of 2-AG and other MAGs and that hijacking the immune system with 2-AG hydrolysis inhibitors might diminish inflammation in humans.
Asunto(s)
Ácido Araquidónico/farmacología , Ácidos Araquidónicos/metabolismo , Endocannabinoides/metabolismo , Ácidos Grasos Insaturados/metabolismo , Glicéridos/metabolismo , Humanos , Hidrólisis , Immunoblotting , Leucocitos , Lisofosfolípidos/metabolismo , Monoglicéridos/metabolismo , Receptores Acoplados a Proteínas G/metabolismoRESUMEN
The regulation of food intake and eating behaviours involves interactions between different systems. The endocannabinoidome, comprising several fatty acid-derived mediators, plays a central role in the regulation of food intake. Alterations of this system have been suggested to intervene in the aetiology of eating disorders. This study aimed to examine the associations between non-pathological eating behaviours and circulating endocannabinoidome mediators in a heterogeneous human population. Plasma 2-monoacyl-glycerol and N-acyl-ethanolamine congeners were measured by LC-MS/MS in a sample of 190 men and women. Eating behaviours were assessed using the Three-Factor Eating Questionnaire (TFEQ) and the Intuitive Eating Scale-2 (IES-2). Following adjustment for body mass index and age, plasma levels of omega-3 polyunsaturated fatty acid-derived 2-monoacyl-glycerols, 2-eicosapentaenoyl-glycerol (2-EPG) and 2-docosapentaenoyl-glycerol (2-DPG), were associated with higher intuitive eating scores (0.15 ≤ rho ≤ 0.20; p < 0.05). These associations were independent of the dietary intake of the fatty acid precursors of these 2-monoacyl-glycerols. However, almost no association was found between plasma levels of N-acyl-ethanolamine congeners and the TFEQ or the IES-2 scores. The results of the present study suggest the association of 2-monoacyl-glycerols, especially 2-EPG and 2-DPG, in the regulation of intuitive eating and the potential implication therein of bioactive lipids.
Asunto(s)
Ácidos Grasos Omega-3 , Espectrometría de Masas en Tándem , Cromatografía Liquida , Ingestión de Alimentos , Conducta Alimentaria , Femenino , Humanos , MasculinoRESUMEN
The endocannabinoidome (expanded endocannabinoid system, eCBome)-gut microbiome (mBIome) axis plays a fundamental role in the control of energy intake and processing. The liver-expressed antimicrobial peptide 2 (LEAP2) is a recently identified molecule acting as an antagonist of the ghrelin receptor and hence a potential effector of energy metabolism, also at the level of the gastrointestinal system. Here we investigated the role of the eCBome-gut mBIome axis in the control of the expression of LEAP2 in the liver and, particularly, the intestine. We confirm that the small intestine is a strong contributor to the circulating levels of LEAP2 in mice, and show that: (1) intestinal Leap2 expression is profoundly altered in the liver and small intestine of 13 week-old germ-free (GF) male mice, which also exhibit strong alterations in eCBome signaling; fecal microbiota transfer (FMT) from conventionally raised to GF mice completely restored normal Leap2 expression after 7 days from this procedure; in 13 week-old female GF mice no significant change was observed; (2) Leap2 expression in organoids prepared from the mouse duodenum is elevated by the endocannabinoid noladin ether, whereas in human Caco-2/15 epithelial intestinal cells it is elevated by PPARγ activation by rosiglitazone; (3) Leap2 expression is elevated in the ileum of mice with either high-fat diet-or genetic leptin signaling deficiency-(i.e., ob/ob and db/db mice) induced obesity. Based on these results, we propose that LEAP2 originating from the small intestine may represent a player in eCBome- and/or gut mBIome-mediated effects on food intake and energy metabolism.
Asunto(s)
Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/metabolismo , Endocannabinoides/genética , Microbioma Gastrointestinal/genética , Receptores de Ghrelina/antagonistas & inhibidores , Animales , Células CACO-2 , Dieta Alta en Grasa , Femenino , Glicéridos/metabolismo , Humanos , Intestinos , Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Obesidad , ARN Mensajero/genética , Rosiglitazona/metabolismo , Transducción de Señal , Espectrometría de Masas en TándemRESUMEN
The gut microbiota is a unique ecosystem of microorganisms interacting with the host through several biochemical mechanisms. The endocannabinoidome (eCBome), a complex signaling system including the endocannabinoid system, approximately 50 receptors and metabolic enzymes, and more than 20 lipid mediators with important physiopathologic functions, modulates gastrointestinal tract function and may mediate host cell-microbe communications there. Germ-free (GF) mice, which lack an intestinal microbiome and so differ drastically from conventionally raised (CR) mice, offer a unique opportunity to explore the eCBome in a microbe-free model and in the presence of a reintroduced functional gut microbiome through fecal microbiota transplant (FMT). We aimed to gain direct evidence for a link between the microbiome and eCBome systems by investigating eCBome alterations in the gut in GF mice before and after FMT. Basal eCBome gene expression and lipid profiles were measured in various segments of the intestine of GF and CR mice at juvenile and adult ages using targeted quantitative PCR transcriptomics and LC-MS/MS lipidomics. GF mice exhibited age-dependent modifications in intestinal eCBome gene expression and lipid mediator levels. FMT from CR donor mice to age-matched GF male mice reversed several of these alterations, particularly in the ileum and jejunum, after only 1 week, demonstrating that the gut microbiome directly impacts the host eCBome and providing a cause-effect relationship between the presence or absence of intestinal microbes and eCBome signaling. These results open the way to new studies investigating the mechanisms through which intestinal microorganisms exploit eCBome signaling to exert some of their physiopathologic functions.
Asunto(s)
Endocannabinoides/metabolismo , Microbioma Gastrointestinal , Intestinos/química , Intestinos/microbiología , Transducción de Señal , Animales , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
SUMMARY: In recent years, major initiatives such as the International Human Epigenome Consortium have generated thousands of high-quality genome-wide datasets for a large variety of assays and cell types. This data can be used as a reference to assess whether the signal from a user-provided dataset corresponds to its expected experiment, as well as to help reveal unexpected biological associations. We have developed the epiGenomic Efficient Correlator (epiGeEC) tool to enable genome-wide comparisons of very large numbers of datasets. A public Galaxy implementation of epiGeEC allows comparison of user datasets with thousands of public datasets in a few minutes. AVAILABILITY AND IMPLEMENTATION: The source code is available at https://bitbucket.org/labjacquespe/epigeec and the Galaxy implementation at http://epigeec.genap.ca. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Epigenómica , Programas Informáticos , Animales , Biología Computacional , Conjuntos de Datos como Asunto , Genoma , Humanos , RatonesRESUMEN
Constant remodeling of tight junctions to regulate trans-epithelial permeability is essential in maintaining intestinal barrier functions and thus preventing diffusion of small molecules and bacteria to host systemic circulation. Gut microbiota dysbiosis and dysfunctional gut barrier have been correlated to a large number of diseases such as obesity, type 2 diabetes and inflammatory bowel disease. This led to the hypothesis that gut bacteria-epithelial cell interactions are key regulators of epithelial permeability through the modulation of tight junctions. Nevertheless, the molecular basis of host-pathogen interactions remains unclear mostly due to the inability of most in vitro models to recreate the differentiated tissue structure and components observed in the normal intestinal epithelium. Recent advances have led to the development of a novel cellular model derived from intestinal epithelial stem cells, the so-called organoids, encompassing all epithelial cell types and reproducing physiological properties of the intestinal tissue. We summarize herein knowledge on molecular aspects of intestinal barrier functions and the involvement of gut bacteria-epithelial cell interactions. This review also focuses on epithelial organoids as a promising model for epithelial barrier functions to study molecular aspects of gut microbiota-host interaction.
Asunto(s)
Permeabilidad de la Membrana Celular , Microbioma Gastrointestinal , Interacciones Huésped-Patógeno , Mucosa Intestinal/fisiología , Uniones Estrechas/fisiología , Animales , HumanosRESUMEN
PURPOSE OF REVIEW: The endocannabinoid (eCB) system, i.e. the receptors that respond to the psychoactive component of cannabis, their endogenous ligands and the ligand metabolic enzymes, is part of a larger family of lipid signals termed the endocannabinoidome (eCBome). We summarize recent discoveries of the roles that the eCBome plays within peripheral tissues in diabetes, and how it is being targeted, in an effort to develop novel therapeutics for the treatment of this increasingly prevalent disease. RECENT FINDINGS: As with the eCB system, many eCBome members regulate several physiological processes, including energy intake and storage, glucose and lipid metabolism and pancreatic health, which contribute to the development of type 2 diabetes (T2D). Preclinical studies increasingly support the notion that targeting the eCBome may beneficially affect T2D. The eCBome is implicated in T2D at several levels and in a variety of tissues, making this complex lipid signaling system a potential source of many potential therapeutics for the treatments for T2D.
Asunto(s)
Cannabis , Diabetes Mellitus Tipo 2 , Endocannabinoides/farmacología , Receptores de Cannabinoides , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucosa/metabolismo , Humanos , Ligandos , Metabolismo de los Lípidos , Receptores de Cannabinoides/efectos de los fármacos , Receptores de Cannabinoides/fisiologíaRESUMEN
OBJECTIVE: Animal models have evidenced the role of intestinal triglyceride-rich lipoprotein overproduction in dyslipidemia. However, few studies have confronted this issue in humans and disclosed the intrinsic mechanisms. This work aimed to establish whether intestinal insulin resistance modifies lipid and lipoprotein homeostasis in the intestine of obese subjects. APPROACH AND RESULTS: Duodenal specimens obtained from 20 obese subjects undergoing bariatric surgery were paired for age, sex, and body mass index with or without insulin resistance, as defined by the homeostasis model assessment of insulin resistance. Insulin signaling, biomarkers of inflammation and oxidative stress, and lipoprotein assembly were assessed. The intestine of insulin-resistant subjects showed defects in insulin signaling as demonstrated by reduced protein kinase B phosphorylation and increased p38 mitogen-activated protein kinase phosphorylation, likely as the result of high oxidative stress (evidenced by malondialdehyde and conjugated dienes) and inflammation (highlighted by nuclear factor-κB, tumor necrosis factor-α, interleukin-6, intercellular adhesion molecule-1, and cyclooxygenase-2). Enhanced de novo lipogenesis rate and apolipoprotein B-48 biogenesis along with exaggerated triglyceride-rich lipoprotein production were observed, concomitantly with the high expression levels of liver and intestinal fatty acid-binding proteins and microsomal transfer protein. The presence of an aberrant intracellular cholesterol transport/metabolism was also suggested by the reduced expression of ATP-binding cassette A1 transporter and proprotein convertase subtilisin/kexin type 9. CONCLUSIONS: According to the present data, the small intestine may be classified as an insulin-sensitive tissue. Dysregulation of intestinal insulin signaling, possibly triggered by oxidative stress and inflammation, was associated with exaggerated lipogenesis and lipoprotein synthesis, which may represent a key mechanism for atherogenic dyslipidemia in patients with metabolic syndrome.
Asunto(s)
Duodeno/fisiopatología , Insulina/fisiología , Obesidad/fisiopatología , Adulto , Apolipoproteínas B/biosíntesis , Apolipoproteínas B/genética , Biomarcadores , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/genética , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Duodeno/enzimología , Dislipidemias/etiología , Dislipidemias/fisiopatología , Proteínas de Unión a Ácidos Grasos/biosíntesis , Proteínas de Unión a Ácidos Grasos/genética , Femenino , Regulación de la Expresión Génica , Humanos , Inflamación , Resistencia a la Insulina , Mucosa Intestinal/metabolismo , Lipogénesis , Hígado/metabolismo , Masculino , Persona de Mediana Edad , Obesidad/complicaciones , Estrés Oxidativo , Fosforilación , Proproteína Convertasa 9 , Proproteína Convertasas/biosíntesis , Proproteína Convertasas/genética , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina Endopeptidasas/biosíntesis , Serina Endopeptidasas/genética , Adulto Joven , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
BACKGROUND: Metabolic alterations relevant to postprandial dyslipidemia were previously identified in the intestine of obese insulin-resistant subjects. The aim of the study was to identify the genes deregulated by systemic insulin resistance in the intestine of severely obese subjects. METHODS: Transcripts from duodenal samples of insulin-sensitive (HOMA-IR < 3, n = 9) and insulin-resistant (HOMA-IR > 7, n = 9) obese subjects were assayed by microarray (Illumina HumanHT-12). RESULTS: A total of 195 annotated genes were identified as differentially expressed between these two groups (Fold change > 1.2). Of these genes, 36 were found to be directly involved in known intestinal functions, including digestion, extracellular matrix, endocrine system, immunity and cholesterol metabolism. Interestingly, all differentially expressed genes (n = 8) implicated in inflammation and oxidative stress were found to be upregulated in the intestine of insulin-resistant compared to insulin-sensitive subjects. Metabolic pathway analysis revealed that several signaling pathways involved in immunity and inflammation were significantly enriched in differently expressed genes and were predicted to be activated in the intestine of insulin-resistant subjects. Using stringent criteria (Fold change > 1.5; FDR < 0.05), three genes were found to be significantly and differently expressed in the intestine of insulin-resistant compared to insulin-sensitive subjects: the transcripts of the insulinotropic glucose-dependant peptide (GIP) and of the ß-microseminoprotein (MSMB) were significantly reduced, but that of the humanin like-1 (MTRNR2L1) was significantly increased. CONCLUSION: These results underline that systemic insulin resistance is associated with remodeling of key intestinal functions. Moreover, these data indicate that small intestine metabolic dysfunction is accompanied with a local amplification of low-grade inflammatory process implicating several pathways. Genes identified in this study are potentially triggered throughout the development of intestinal metabolic abnormalities, which could contribute to dyslipidemia, a component of metabolic syndrome and diabetes.
Asunto(s)
Expresión Génica , Inflamación/genética , Resistencia a la Insulina/genética , Obesidad/genética , Obesidad/fisiopatología , ARN Mensajero/metabolismo , Adulto , Células CACO-2 , Duodeno , Femenino , Polipéptido Inhibidor Gástrico/genética , Perfilación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular , Masculino , Análisis por Micromatrices , Obesidad/patología , Estrés Oxidativo/genética , Proteínas de Secreción Prostática/genética , Proteínas/genética , Transducción de Señal/genéticaRESUMEN
Background: Human studies have linked obesity-related diseases, such as type-2 diabetes (T2D), to the modulation of endocannabinoid signaling. Cannabinoid CB1 and CB2 receptor activation by the endocannabinoids (eCBs) 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA), both derived from arachidonic acid, play a role in homeostatic regulation. Other long chain fatty acid-derived endocannabinoid-like molecules have extended the metabolic role of this signaling system through other receptors. In this study, we aimed to assess in depth the interactions between the circulating and intestinal tone of this extended eCB system, or endocannabinoidome (eCBome), and their involvement in the pathogenesis of diabetes. Methods: Plasma and ileum samples were collected from subjects with obesity and harboring diverse degrees of insulin resistance or T2D, who underwent bariatric surgery. The levels of eCBome mediators and their congeners were then assessed by liquid chromatography coupled to tandem mass spectrometry, while gene expression was screened with qPCR arrays. Findings: Intestinal and circulating levels of eCBome mediators were higher in subjects with T2D. We found an inverse correlation between the intestinal and circulating levels of monoacylglycerols (MAGs). Additionally, we identified genes known to be implicated in both lipid metabolism and intestinal function that are altered by the context of obesity and glucose homeostasis. Interpretation: Although the impact of glucose metabolism on the eCBome remains poorly understood in subjects with advanced obesity state, our results suggest a strong causative link between altered glucose homeostasis and eCBome signaling in the intestine and the circulation.
RESUMEN
Further research is required to understand hormonal regulation of food intake during pregnancy and its association with energy intake. The objectives are to (i) compare postprandial responses of plasma glucagon-like peptide-1 (GLP-1) between trimesters, (ii) compare postprandial appetite sensations between trimesters, and (iii) examine trimester-specific associations between GLP-1 levels, appetite sensations, and usual energy intake. At each trimester, participants (n = 26) consumed a standard test meal following a 12 h fast. Plasma GLP-1 levels were measured by enzyme-linked immunosorbent assay method at fasting and at 30, 60, 120, and 180 min postprandial. A visual analogue scale assessing appetite sensations was completed at fasting and at 15, 30, 45, 60, 90, 120, 150, and 180 min postprandial. Mean energy intake was assessed using three web-based 24 h dietary recalls at each trimester. Lower postprandial GLP-1 responses were observed in the 2nd (p = 0.004) and 3rd trimesters (p < 0.001) compared to the 1st trimester. Greater postprandial sensations of desire to eat, hunger, and prospective food consumption were noted in the 3rd trimester compared to the 1st trimester (p < 0.04, for all). Fasting GLP-1 was negatively associated with fasting appetite sensations (except fullness) at the 2nd trimester (p < 0.02, for all). Postprandially, significant associations were observed for incremental areas under the curve from 0 to 30 min between GLP-1 and fullness at the 2nd (p = 0.01) and 3rd trimesters (p = 0.03). No associations between fasting or postprandial GLP-1 and usual energy intake were observed. Overall, GLP-1 and appetite sensation responses significantly differ between trimesters, but few associations were observed between GLP-1, appetite sensations, and usual energy intake.
Asunto(s)
Apetito , Péptido 1 Similar al Glucagón , Embarazo , Femenino , Humanos , Apetito/fisiología , Ingestión de Energía/fisiología , Hambre/fisiología , Sensación , Periodo Posprandial/fisiología , Estudios CruzadosRESUMEN
BACKGROUND: The endocannabinoid system and its extension, the endocannabinoidome (eCBome), are involved in numerous biological processes, notably energy homeostasis, across virtually all tissues. While the circulating eCBome mediator profile is associated with dietary intakes and metabolic status, an important knowledge gap resides in the identification of the precise determinants of these mediators in the gut lumen. We aimed at establishing the profile of eCBome mediators in human feces and investigating their association with circulating eCBome mediators, dietary intakes, metabolic status and gut microbiota composition. METHODS: N-acyl-ethanolamines (NAEs) and 2-monoacyl-glycerols (2-MAGs) were profiled by LC-MS/MS in plasma and feces of a cross-sectional cohort (n = 195) and a short term dietary intervention trials (n = 21) with comprehensive dietary intakes and gut microbiota measures. RESULTS: Six NAEs and seven 2-MAGs were identified in fecal samples, but some, especially omega-3 derived mediators, were undetectable in the majority of samples. Fecal NAEs, and to a lower extent 2-MAGs, were positively albeit weakly correlated with the circulating levels of eCBome mediators. Fecal 2-AG, PEA and DHEA levels were positively associated with visceral adiposity and with some parameters of the metabolic profile. Dietary intakes of foods rich in fibers were associated with lower fecal levels of several eCBome mediators, while intakes of unsaturated fatty acids were associated with fecal 2-OG and 2-LG. Interestingly, gut microbiota diversity and composition were a strong correlate of the fecal eCBome profile. CONCLUSION: The fecal eCBome profile is associated with gut microbiota composition and dietary intakes, more than with the circulating profile. These results strengthen the hypothesis of an interrelation between the gut microbiome and eCBome signaling involved in the regulation of numerous host biological processes.
RESUMEN
Objective: Endocannabinoids and their N-acyl-ethanolamines (NAEs) and 2monoacyl-glycerols (2-MAGs) congeners are involved in the central and peripheral regulation of energy homeostasis, they are present in human milk and are associated with obesity. Infants exposed in utero to gestational diabetes mellitus (GDM) are more likely to develop obesity. The objective of this cross-sectional study is to compare the profile of eCBome mediators in milk of women with gestational diabetes (GDM+) and without (GDM-) and to assess the association with offspring growth. The hypothesis is that the eCBome of GDM+ human milk is altered and associated with a difference in infant growth. Methods: Circulating eCBome mediators were measured by LC-MS/MS in human milk obtained at 2 months postpartum from GDM+ (n=24) and GDM- (n=29) women. Infant weight and height at 2 months were obtained from the child health record. Z-scores were calculated. Results: Circulating Npalmitoylethanolamine (PEA) was higher in human milk of GDM+ women than in GDM- women (4.9 ± 3.2 vs. 3.3 ± 1.7, p=0.04). Higher levels were also found for several 2monoacyl-glycerols (2-MAGs) (p<0.05). The levels of NAEs (ß=-4.6, p=0.04) and especially non-omega-3 NAEs (B=-5.6, p=0.004) in human milk were negatively correlated with weight-for-age z-score of GDM+ offspring. Conclusion: The profile of eCBome mediators in human milk at 2 months postpartum was different in GDM+ compared to GDM- women and was associated with GDM+ offspring growth at 2 months. Clinical trial registration: ClinicalTrials.gov, identifier (NCT04263675 and NCT02872402).
Asunto(s)
Diabetes Gestacional , Endocannabinoides , Leche Humana , Adulto , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Embarazo , Desarrollo Infantil/fisiología , Estudios Transversales , Diabetes Gestacional/metabolismo , Diabetes Gestacional/sangre , Endocannabinoides/sangre , Endocannabinoides/metabolismo , Leche Humana/química , Leche Humana/metabolismoRESUMEN
The gut microbiota and the endocannabinoidome (eCBome) play important roles in regulating energy homeostasis, and both are closely linked to dietary habits. However, the complex and compositional nature of these variables has limited our understanding of their interrelationship. This study aims to decipher the interrelation between dietary intake and the gut microbiome-eCBome axis using two different approaches for measuring dietary intake: one based on whole food and the other on macronutrient intakes. We reveal that food patterns, rather than macronutrient intakes, were associated with the gut microbiome-eCBome axis in a sample of healthy men and women (n = 195). N-acyl-ethanolamines (NAEs) and gut microbial families were correlated with intakes of vegetables, refined grains, olive oil and meats independently of adiposity and energy intakes. Specifically, higher intakes in vegetables and olive oil were associated with increased relative abundance of Clostridiaceae, Veillonellaceae and Peptostreptococaceae, decreased relative abundance of Acidominococaceae, higher circulating levels of NAEs, and higher HDL and LDL cholesterol levels. Our findings highlight the relative importance of food patterns in determining the gut microbiome-eCBome axis. They emphasize the importance of recognizing the contribution of dietary habits in these systems to develop personalized dietary interventions for preventing and treating metabolic disorders through this axis.
Asunto(s)
Antígenos de Grupos Sanguíneos , Microbioma Gastrointestinal , Masculino , Humanos , Femenino , Aceite de Oliva , Dieta , Ingestión de Alimentos , Verduras , EtanolaminasRESUMEN
BACKGROUND: Bioactive lipids produced by human cells or by the gut microbiota might play an important role in health and disease. Dietary intakes are key determinants of the gut microbiota, its production of short-chain (SCFAs) and branched-chain fatty acids (BCFAs), and of the host endocannabinoidome signalling, which are all involved in metabolic diseases. This hypothesis-driven longitudinal fixed sequence nutritional study, realized in healthy participants, was designed to determine if a lead-in diet affects the host response to a short-term dietary intervention. Participants received a Mediterranean diet (MedDiet) for 3 days, a 13-day lead-in controlled diet reflecting the average Canadian dietary intake (CanDiet), and once again a MedDiet for 3 consecutive days. Fecal and blood samples were collected at the end of each dietary phase to evaluate alterations in gut microbiota composition and plasma levels of endocannabinoidome mediators, SCFAs, and BCFAs. RESULTS: We observed an immediate and reversible modulation of plasma endocannabinoidome mediators, BCFAs, and some SCFAs in response to both diets. BCFAs were more strongly reduced by the MedDiet when the latter was preceded by the lead-in CanDiet. The gut microbiota response was also immediate, but not all changes due to the CanDiet were reversible following a short dietary MedDiet intervention. Higher initial microbiome diversity was associated with reduced microbiota modulation after short-term dietary interventions. We also observed that BCFAs and 2-monoacylglycerols had many, but distinct, correlations with gut microbiota composition. Several taxa modulated by dietary intervention were previously associated to metabolic disorders, warranting the need to control for recent diet in observational association studies. CONCLUSIONS: Our results indicate that lipid mediators involved in the communication between the gut microbiota and host metabolism exhibit a rapid response to dietary changes, which is also the case for some, but not all, microbiome taxa. The lead-in diet influenced the gut microbiome and BCFA, but not the endocannabinoidome, response to the MedDiet. A higher initial microbiome diversity favored the stability of the gut microbiota in response to dietary changes. This study highlights the importance of considering the previous diet in studies relating the gut microbiome with lipid signals involved in host metabolism. Video Abstract.
Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Canadá , Dieta , Ácidos GrasosRESUMEN
Background: Gestational diabetes mellitus (GDM) is known to affect human milk composition. Aims of this study were to compare macronutrient and energy content of human milk of women with (GDM+) and without GDM (GDM-), to assess the association between maternal health and human milk macronutrient and energy content and association between human milk macronutrient and energy content and infant growth. Study Design and Methods: Two months after delivery, hindmilk samples were collected. Triglyceride (TG), lactose, and protein content of human milk were measured. An oral glucose tolerance test was performed. Infant weight and length at birth and 2 months were collected. Weight-for-age (WAZ) and weight-for-length z-scores were calculated. Results: Twenty-four GDM+ and 29 GDM- women were included. Protein, lactose, and energy content of human milk were similar between groups. TG concentration was higher in GDM+ than in GDM- women (6.3 ± 2.0 versus 5.3 ± 1.2, p = 0.04). This difference was no longer significant after adjustment for maternal age and infant sex (p = 0.23). Maternal age was associated with TG (r = 0.28, p = 0.04) and lactose (r = -0.30, p = 0.03), while fasting glucose was associated with proteins (r = 0.30, p = 0.03) and tended to be associated with TG (r = 0.27, p = 0.05) and energy (r = 0.24, p = 0.08). TG levels in human milk were associated with weight (ß: 0.26, 95% confidence interval [CI]: 0.02 to 0.50) and WAZ (ß: 0.40, 95% CI: 0.05 to 0.75) at 2 months among children unexposed (GDM-) to GDM, but not among children exposed (GDM+) Conclusions: In conclusion, GDM status, maternal age, and fasting glucose level were associated with human milk composition. Finally, TG in human milk was associated with infant growth among GDM- children but not among GDM+ children. ClinicalTrials.gov NCT02872402.
Asunto(s)
Diabetes Gestacional , Femenino , Humanos , Lactante , Recién Nacido , Embarazo , Lactancia Materna , Diabetes Gestacional/metabolismo , Glucosa , Lactosa , Leche Humana/metabolismoRESUMEN
Adipogenesis and lipid storage in human adipose tissue are inhibited by androgens such as DHT. Inactivation of DHT to 3α-diol is stimulated by glucocorticoids in human preadipocytes. We sought to characterize glucocorticoid-induced androgen inactivation in human preadipocytes and to establish its role in the antiadipogenic action of DHT. Subcutaneous and omental primary preadipocyte cultures were established from fat samples obtained in subjects undergoing abdominal surgeries. Inactivation of DHT to 3α/ß-diol for 24 h was measured in dexamethasone- or vehicle-treated cells. Specific downregulation of aldo-keto reductase 1C (AKR1C) enzymes in human preadipocytes was achieved using RNA interference. In whole adipose tissue sample, cortisol production was positively correlated with androgen inactivation in both subcutaneous and omental adipose tissue (P < 0.05). Maximal dexamethasone (1 µM) stimulation of DHT inactivation was higher in omental compared with subcutaneous fat from men as well as subcutaneous and omental fat from women (P < 0.05). A significant positive correlation was observed between BMI and maximal dexamethasone-induced DHT inactivation rates in subcutaneous and omental adipose tissue of men and women (r = 0.24, n = 26, P < 0.01). siRNA-induced downregulation of AKR1C2, but not AKR1C1 or AKR1C3, significantly reduced basal and glucocorticoid-induced androgen inactivation rates (P < 0.05). The inhibitory action of DHT on preadipocyte differentiation was potentiated following AKR1C2 but not AKR1C1 or AKR1C3 downregulation. Specifically, lipid accumulation, G3PDH activity, and FABP4 mRNA expression in differentiated preadipocytes exposed to DHT were reduced further upon AKR1C2 siRNA transfection. We conclude that glucocorticoid-induced androgen inactivation is mediated by AKR1C2 and is particularly effective in omental preadipocytes of obese men. The interplay between glucocorticoids and AKR1C2-dependent androgen inactivation may locally modulate adipogenesis and lipid accumulation in a depot-specific manner.
Asunto(s)
Adipocitos Blancos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Andrógenos/metabolismo , Dexametasona/farmacología , Glucocorticoides/farmacología , Hidroxiesteroide Deshidrogenasas/metabolismo , Obesidad/metabolismo , Adipocitos Blancos/metabolismo , Adipocitos Blancos/patología , Adulto , Índice de Masa Corporal , Células Cultivadas , Dihidrotestosterona/metabolismo , Femenino , Humanos , Hidrocortisona/metabolismo , Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , Hidroxiesteroide Deshidrogenasas/química , Hidroxiesteroide Deshidrogenasas/genética , Grasa Intraabdominal/efectos de los fármacos , Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/patología , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Obesidad/tratamiento farmacológico , Obesidad/patología , Interferencia de ARN , ARN Interferente Pequeño , Caracteres Sexuales , Grasa Subcutánea Abdominal/efectos de los fármacos , Grasa Subcutánea Abdominal/metabolismo , Grasa Subcutánea Abdominal/patologíaRESUMEN
The natural inflammation occurring during pregnancy can, under certain conditions, be associated with adverse pregnancy outcomes. This study aimed to (1) quantify changes in circulating concentrations of leptin, adiponectin, interleukin-6 (IL-6) and C-reactive protein (CRP) across trimesters of pregnancy, according to pre-pregnancy body mass index (ppBMI); and (2) examine the trimester-specific associations between the inflammatory markers' concentrations, a Mediterranean diet score (MDS) and the dietary inflammatory index (DII). We measured leptin, adiponectin and IL-6 by ELISA and CRP by high-sensitivity immunonephelometry, in blood samples from 79 pregnant women (age: 32.1 ± 3.7 years; ppBMI: 25.7 ± 5.8 kg/m2). Three Web-based 24-h recalls were completed at each trimester and used to compute the MDS and the DII. CRP concentrations remained stable across trimesters, whereas concentrations of leptin and IL-6 increased, and adiponectin concentrations decreased (p < 0.001). Changes in leptin and adiponectin concentrations also differed according to ppBMI categories (p < 0.05). As for the dietary scores, the only significant association was observed in the second trimester between leptin concentrations and the MDS (r = -0.26, p < 0.05). In conclusion, ppBMI and the progression of pregnancy itself probably supplant the potential associations between diet and the inflammation occurring during that period. Novelty: Circulating leptin and IL-6 concentrations increased across trimesters whereas CRP was stable, and adiponectin decreased. Variations in circulating leptin and adiponectin concentrations differed by ppBMI categories. Very few associations were observed between dietary scores and inflammatory markers.
Asunto(s)
Dieta Mediterránea , Leptina , Adiponectina , Adulto , Biomarcadores , Proteína C-Reactiva/metabolismo , Femenino , Humanos , Inflamación , EmbarazoRESUMEN
Dietary micronutrients act at the intestinal level, thereby influencing microbial communities, the host endocannabinoidome, and immune and anti-oxidative response. Selenium (Se) is a trace element with several health benefits. Indeed, Se plays an important role in the regulation of enzymes with antioxidative and anti-inflammatory activity as well as indicators of the level of oxidative stress, which, together with chronic low-grade inflammation, is associated to obesity. To understand how Se variations affect diet-related metabolic health, we fed female and male mice for 28 days with Se-depleted or Se-enriched diets combined with low- and high-fat/sucrose diets. We quantified the plasma and intestinal endocannabinoidome, profiled the gut microbiota, and measured intestinal gene expression related to the immune and the antioxidant responses in the intestinal microenvironment. Overall, we show that intestinal segment-specific microbiota alterations occur following high-fat or low-fat diets enriched or depleted in Se, concomitantly with modifications of circulating endocannabinoidome mediators and changes in cytokine and antioxidant enzyme expression. Specifically, Se enrichment was associated with increased circulating plasma levels of 2-docosahexaenoyl-glycerol (2-DHG), a mediator with putative beneficial actions on metabolism and inflammation. Others eCBome mediators also responded to the diets. Concomitantly, changes in gut microbiota were observed in Se-enriched diets following a high-fat diet, including an increase in the relative abundance of Peptostreptococcaceae and Lactobacillaceae. With respect to the intestinal immune response and anti-oxidative gene expression, we observed a decrease in the expression of proinflammatory genes Il1ß and Tnfα in high-fat Se-enriched diets in caecum, while in ileum an increase in the expression levels of the antioxidant gene Gpx4 was observed following Se depletion. The sex of the animal influenced the response to the diet of both the gut microbiota and endocannabinoid mediators. These results identify Se as a regulator of the gut microbiome and endocannabinoidome in conjunction with high-fat diet, and might be relevant to the development of new nutritional strategies to improve metabolic health and chronic low-grade inflammation associated to metabolic disorders.
Asunto(s)
Microbioma Gastrointestinal , Selenio , Ratones , Masculino , Femenino , Animales , Microbioma Gastrointestinal/fisiología , Selenio/farmacología , Antioxidantes , Dieta Alta en Grasa/efectos adversos , InflamaciónRESUMEN
The extended endocannabinoid system, also termed endocannabinoidome, participates in multiple metabolic functions in health and disease. Physical activity can both have an acute and chronic impact on endocannabinoid mediators, as does diet. In this crossover randomized controlled study, we investigated the influence of diet on the peripheral response to acute maximal aerobic exercise in a sample of active adult women (n = 7) with no underlying metabolic conditions. We compared the impact of 7-day standardized Mediterranean diet (MedDiet) and control diet inspired by Canadian macronutrient intake (CanDiet) on endocannabinoidome and short-chain fatty acid metabolites post maximal aerobic exercise. Overall, plasmatic endocannabinoids, their congeners and some polyunsaturated fatty acids increased significantly post maximal aerobic exercise upon cessation of exercise and recovered their initial values within 1 h after exercise. Most N-acylethanolamines and polyunsaturated fatty acids increased directly after exercise when the participants had consumed the MedDiet, but not when they had consumed the CanDiet. This impact was different for monoacylglycerol endocannabinoid congeners, which in most cases reacted similarly to acute exercise while on the MedDiet or the CanDiet. Fecal microbiota was only minimally affected by the diet in this cohort. This study demonstrates that endocannabinoidome mediators respond to acute maximal aerobic exercise in a way that is dependent on the diet consumed in the week prior to exercise.