RESUMEN
Pain associates both sensory and emotional aversive components, and often leads to anxiety and depression when it becomes chronic. Here, we characterized, in a mouse model, the long-term development of these sensory and aversive components as well as anxiodepressive-like consequences of neuropathic pain and determined their electrophysiological impact on the anterior cingulate cortex (ACC, cortical areas 24a/24b). We show that these symptoms of neuropathic pain evolve and recover in different time courses following nerve injury in male mice. In vivo electrophysiological recordings evidence an increased firing rate and bursting activity within the ACC when anxiodepressive-like consequences developed, and this hyperactivity persists beyond the period of mechanical hypersensitivity. Whole-cell patch-clamp recordings also support ACC hyperactivity, as shown by increased excitatory postsynaptic transmission and contribution of NMDA receptors. Optogenetic inhibition of the ACC hyperactivity was sufficient to alleviate the aversive and anxiodepressive-like consequences of neuropathic pain, indicating that these consequences are underpinned by ACC hyperactivity.SIGNIFICANCE STATEMENT Chronic pain is frequently comorbid with mood disorders, such as anxiety and depression. It has been shown that it is possible to model this comorbidity in animal models by taking into consideration the time factor. In this study, we aimed at determining the dynamic of different components and consequences of chronic pain, and correlated them with electrophysiological alterations. By combining electrophysiological, optogenetic, and behavioral analyses in a mouse model of neuropathic pain, we show that the mechanical hypersensitivity, ongoing pain, anxiodepressive consequences, and their recoveries do not necessarily exhibit temporal synchrony during chronic pain processing, and that the hyperactivity of the anterior cingulate cortex is essential for driving the emotional impact of neuropathic pain.
Asunto(s)
Dolor Crónico/fisiopatología , Dolor Crónico/psicología , Giro del Cíngulo/fisiopatología , Neuralgia/fisiopatología , Neuralgia/psicología , Animales , Ansiedad/etiología , Ansiedad/fisiopatología , Depresión/etiología , Depresión/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
Morphine is a highly potent analgesic with high addictive potential in specific contexts. Although dopamine neurons of the ventral tegmental area (VTA) are widely believed to play an essential role in the development of drug addiction, neuronal circuits underlying morphine action on dopamine neurons have not been fully elucidated. Here we combined in vivo electrophysiology, tract-tracing experiments, and targeted neuronal inactivation to dissect a neural circuit for acute morphine action on dopamine neurons in rats. We found that in vivo, morphine targets the GABAergic tail of the VTA, also called the rostromedial tegmental nucleus, to increase the firing of dopamine neurons through the activation of VTA µ opioid receptors expressed on tail of the VTA/rostromedial tegmental nucleus efferents. Our data also reveal that in the absence of VTA glutamatergic tone, there is no morphine-induced activation of dopamine neurons. These results define the anatomical organization and functional role of a neural circuit for acute morphine action on dopamine neurons.
Asunto(s)
Dopamina/metabolismo , Morfina/farmacología , Neuronas/efectos de los fármacos , Área Tegmental Ventral/efectos de los fármacos , Animales , Ácido Glutámico/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Ratas , Área Tegmental Ventral/citología , Área Tegmental Ventral/metabolismo , Ácido gamma-Aminobutírico/metabolismoRESUMEN
In addition to its neurotrophic role, brain-derived neurotrophic factor (BDNF) is involved in a wide array of functions, including anxiety and pain. The central amygdaloid nucleus (CeA) contains a high concentration of BDNF in terminals, originating from the pontine parabrachial nucleus. Since the spino-parabrachio-amygdaloid neural pathway is known to convey nociceptive information, we hypothesized a possible involvement of BDNF in supraspinal pain-related processes. To test this hypothesis, we generated localized deletion of BDNF in the parabrachial nucleus using local bilateral injections of adeno-associated viruses in adult floxed-BDNF mice. Basal thresholds of thermal and mechanical nociceptive responses were not altered by BDNF loss and no behavioural deficit was noticed in anxiety and motor tests. However, BDNF-deleted animals displayed a major decrease in the analgesic effect of morphine. In addition, intra-CeA injections of the BDNF scavenger TrkB-Fc in control mice also decreased morphine-induced analgesia. Finally, the number of c-Fos immunoreactive nuclei after acute morphine injection was decreased by 45% in the extended amygdala of BDNF-deleted animals. The absence of BDNF in the parabrachial nucleus thus altered the parabrachio-amygdaloid pathway. Overall, our study provides evidence that BDNF produced in the parabrachial nucleus modulates the functions of the parabrachio-amygdaloid pathway in opiate analgesia.
Asunto(s)
Amígdala del Cerebelo/metabolismo , Analgésicos Opioides/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Morfina/farmacología , Puente/metabolismo , Amígdala del Cerebelo/efectos de los fármacos , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Adaptación a la Oscuridad/efectos de los fármacos , Dependovirus/genética , Conducta Exploratoria/efectos de los fármacos , Hiperalgesia/tratamiento farmacológico , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/efectos de los fármacos , Dimensión del Dolor , Umbral del Dolor/efectos de los fármacos , Puente/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Prueba de Desempeño de Rotación con Aceleración ConstanteRESUMEN
Over the past 20 years, clinical and preclinical studies point to the anterior cingulate cortex (ACC) as a site of interest for several neurological and psychiatric conditions. The ACC plays a critical role in emotion, autonomic regulation, pain processing, attention, memory and decision making. An increasing number of studies have demonstrated the involvement of the ACC in the emotional component of pain and its comorbidity with emotional disorders such as anxiety and depression. Thanks to the development of animal models combined with state-of-the-art technologies, we now have a better mechanistic understanding of the functions of the ACC. Hence, the primary aim of this review is to compile the most recent preclinical studies on the role of ACC in the emotional component and consequences of chronic pain. Herein, we thus thoroughly describe the pain-induced electrophysiological, molecular and anatomical alterations in the ACC and in its related circuits. Finally, we discuss the next steps that are needed to strengthen our understanding of the involvement of the ACC in emotional and pain processing.
RESUMEN
While depression and chronic pain are frequently comorbid, underlying neuronal circuits and their psychopathological relevance remain poorly defined. Here we show in mice that hyperactivity of the neuronal pathway linking the basolateral amygdala to the anterior cingulate cortex is essential for chronic pain-induced depression. Moreover, activation of this pathway in naive male mice, in the absence of on-going pain, is sufficient to trigger depressive-like behaviors, as well as transcriptomic alterations that recapitulate core molecular features of depression in the human brain. These alterations notably impact gene modules related to myelination and the oligodendrocyte lineage. Among these, we show that Sema4a, which was significantly upregulated in both male mice and humans in the context of altered mood, is necessary for the emergence of emotional dysfunction. Overall, these results place the amygdalo-cingulate pathway at the core of pain and depression comorbidity, and unravel the role of Sema4a and impaired myelination in mood control.
Asunto(s)
Complejo Nuclear Basolateral , Dolor Crónico , Semaforinas , Ratones , Masculino , Humanos , Animales , Depresión/genética , Giro del Cíngulo/metabolismo , Complejo Nuclear Basolateral/metabolismo , Comorbilidad , Semaforinas/metabolismoRESUMEN
The lateral hypothalamus is a major integrative hub with a complex architecture characterized by intricate and overlapping cellular populations expressing a large variety of neuro-mediators. In rats, the subfornical lateral hypothalamus (LHsf) was identified as a discrete area with very specific outputs, receiving a strong input from the nucleus incertus, and involved in defensive and foraging behaviors. We identified in the mouse lateral hypothalamus a discrete subfornical region where a conspicuous cluster of neurons express the mu opioid receptor. We thus examined the inputs and outputs of this LHsf region in mice using retrograde tracing with the cholera toxin B subunit and anterograde tracing with biotin dextran amine, respectively. We identified a connectivity profile largely similar, although not identical, to what has been described in rats. Indeed, the mouse LHsf has strong reciprocal connections with the lateral septum, the ventromedial hypothalamic nucleus and the dorsal pre-mammillary nucleus, in addition to a dense output to the lateral habenula. However, the light input from the nucleus incertus and the moderate bidirectional connectivity with nucleus accumbens are specific to the mouse LHsf. A preliminary neurochemical study showed that LHsf neurons expressing mu opioid receptors also co-express calcitonin gene-related peptide or somatostatin and that the reciprocal connection between the LHsf and the lateral septum may be functionally modulated by enkephalins acting on mu opioid receptors. These results suggest that the mouse LHsf may be hodologically and functionally comparable to its rat counterpart, but more atypical connections also suggest a role in consummatory behaviors.
Asunto(s)
Área Hipotalámica Lateral , Animales , Habénula , Hipotálamo , Ratones , Vías Nerviosas , Neuronas , Núcleos del Rafe , Receptores Opioides muRESUMEN
The central extended amygdala (EAc) is a forebrain macrosystem which has been widely implicated in reward, fear, anxiety, and pain. Its two key structures, the lateral bed nucleus of the stria terminalis (BSTL) and the central nucleus of the amygdala (CeA), share similar mesoscale connectivity. However, it is not known whether they also share similar cell-specific neuronal circuits. We addressed this question using tract-tracing and immunofluorescence to reveal the EAc microcircuits involving two neuronal populations expressing either protein kinase C delta (PKCδ) or somatostatin (SOM). PKCδ and SOM are expressed predominantly in the dorsal BSTL (BSTLD) and in the lateral/capsular parts of CeA (CeL/C). We found that, in both BSTLD and CeL/C, PKCδ+ cells are the main recipient of extra-EAc inputs from the lateral parabrachial nucleus (LPB), while SOM+ cells constitute the main source of long-range projections to extra-EAc targets, including LPB and periaqueductal gray. PKCδ+ cells can also integrate inputs from the basolateral nucleus of the amygdala or insular cortex. Within EAc, PKCδ+, but not SOM+ neurons, serve as the major source of inputs to the ventral BSTL and to the medial part of CeA. However, both cell types can be involved in mutual connections between BSTLD and CeL/C. These results unveil the pivotal positions of PKCδ+ and SOM+ neurons in organizing parallel cell-specific neuronal circuits within CeA and BSTL, but also between them, which further reinforce the notion of EAc as a structural and functional macrosystem.
Asunto(s)
Núcleo Amigdalino Central/citología , Neuronas/clasificación , Neuronas/metabolismo , Núcleos Septales/citología , Animales , Biotina/análogos & derivados , Biotina/metabolismo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Toxina del Cólera/metabolismo , Dextranos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas , Neuronas/fisiología , Proteína Quinasa C-delta/metabolismo , Somatostatina/metabolismo , Estilbamidinas/metabolismoRESUMEN
Opiate addiction develops as a chronic relapsing disorder upon drug recreational use or following misuse of analgesic prescription. Mu opioid (MOP) receptors are the primary molecular target of opiates but increasing evidence support in vivo functional heteromerization with the delta opioid (DOP) receptor, which may be part of the neurobiological processes underlying opiate addiction. Here, we used double knock-in mice co-expressing fluorescent versions of the MOP and DOP receptors to examine the impact of chronic morphine administration on the distribution of neurons co-expressing the two receptors. Our data show that MOP/DOP neuronal co-expression is broader in morphine-dependent mice and is detected in novel brain areas located in circuits related to drug reward, motor activity, visceral control and emotional processing underlying withdrawal. After four weeks of abstinence, MOP/DOP neuronal co-expression is still detectable in a large number of these brain areas except in the motor circuit. Importantly, chronic morphine administration increased the proportion of MOP/DOP neurons in the brainstem of morphine-dependent and abstinent mice. These findings establish persistent changes in the abstinent state that may modulate relapse and opiate-induced hyperalgesia and also point to the therapeutic potential of MOP/DOP targeting. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.
Asunto(s)
Morfina/efectos adversos , Neuronas/efectos de los fármacos , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo , Síndrome de Abstinencia a Sustancias , Analgésicos Opioides/efectos adversos , Animales , Femenino , Técnicas de Sustitución del Gen , Hipocampo/metabolismo , Hiperalgesia/tratamiento farmacológico , Locus Coeruleus/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Dependencia de Morfina/tratamiento farmacológico , Receptor Cross-TalkRESUMEN
BACKGROUND: Recent evidence suggests that oxytocin (OT), secreted in the superficial spinal cord dorsal horn by descending axons of paraventricular hypothalamic nucleus (PVN) neurons, produces antinociception and analgesia. The spinal mechanism of OT is, however, still unclear and requires further investigation. We have used patch clamp recording of lamina II neurons in spinal cord slices and immunocytochemistry in order to identify PVN-activated neurons in the superficial layers of the spinal cord and attempted to determine how this neuronal population may lead to OT-mediated antinociception. RESULTS: We show that OT released during PVN stimulation specifically activates a subpopulation of lamina II glutamatergic interneurons which are localized in the most superficial layers of the dorsal horn of the spinal cord (lamina I-II). This OT-specific stimulation of glutamatergic neurons allows the recruitment of all GABAergic interneurons in lamina II which produces a generalized elevation of local inhibition, a phenomenon which might explain the reduction of incoming Adelta and C primary afferent-mediated sensory messages. CONCLUSION: Our results obtained in lamina II of the spinal cord provide the first clear evidence of a specific local neuronal network that is activated by OT release to induce antinociception. This OT-specific pathway might represent a novel and interesting therapeutic target for the management of neuropathic and inflammatory pain.
Asunto(s)
Analgesia/métodos , Ácido Glutámico , Neuronas/fisiología , Oxitocina/fisiología , Médula Espinal/citología , Ácido gamma-Aminobutírico , Animales , Electrofisiología , Antagonistas del GABA , Oxitocina/metabolismo , Dolor/tratamiento farmacológico , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas , Ratas WistarRESUMEN
The anterior cingulate cortex (ACC), constituted by areas 25, 32, 24a and 24b in rodents, plays a major role in cognition, emotion and pain. In a previous study, we described the afferents of areas 24a and 24b and those of areas 24a' and 24b' of midcingulate cortex (MCC) in mice and highlighted some density differences among cingulate inputs (Fillinger et al., Brain Struct Funct 222:1509-1532, 2017). To complete this connectome, we analyzed here the efferents of ACC and MCC by injecting anterograde tracers in areas 24a/24b of ACC and 24a'/24b' of MCC. Our results reveal a common projections pattern from both ACC and MCC, targeting the cortical mantle (intracingulate, retrosplenial and parietal associative cortex), the non-cortical basal forebrain, (dorsal striatum, septum, claustrum, basolateral amygdala), the hypothalamus (anterior, lateral, posterior), the thalamus (anterior, laterodorsal, ventral, mediodorsal, midline and intralaminar nuclei), the brainstem (periaqueductal gray, superior colliculus, pontomesencephalic reticular formation, pontine nuclei, tegmental nuclei) and the spinal cord. In addition to an overall denser ACC projection pattern compared to MCC, our analysis revealed clear differences in the density and topography of efferents between ACC and MCC, as well as between dorsal (24b/24b') and ventral (24a/24a') areas, suggesting a common functionality of these two cingulate regions supplemented by specific roles of each area. These results provide a detailed analysis of the efferents of the mouse areas 24a/24b and 24a'/24b' and achieve the description of the cingulate connectome, which bring the anatomical basis necessary to address the roles of ACC and MCC in mice.
Asunto(s)
Vías Eferentes/fisiología , Giro del Cíngulo/anatomía & histología , Red Nerviosa/fisiología , Animales , Biotina/análogos & derivados , Biotina/metabolismo , Dextranos/metabolismo , Giro del Cíngulo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fitohemaglutininas/metabolismoRESUMEN
Areas 24a and 24b of the anterior cingulate cortex (ACC) play a major role in cognition, emotion and pain. While their connectivity has been studied in primate and in rat, a complete mapping was still missing in the mouse. Here, we analyzed the afferents to the mouse ACC by injecting retrograde tracers in the ventral and dorsal areas of the ACC (areas 24a/b) and of the midcingulate cortex (MCC; areas 24a'/b'). Our results reveal inputs from five principal groups of structures: (1) cortical areas, mainly the orbital, medial prefrontal, retrosplenial, parietal associative, primary and secondary sensory areas and the hippocampus, (2) basal forebrain, mainly the basolateral amygdaloid nucleus, the claustrum and the horizontal limb of the diagonal band of Broca, (3) the thalamus, mainly the anteromedial, lateral mediodorsal, ventromedial, centrolateral, central medial and reuniens/rhomboid nuclei, (4) the hypothalamus, mainly the lateral and retromammillary areas, and (5) the brainstem, mainly the monoaminergic centers. The neurochemical nature of inputs from the diagonal band of Broca and brainstem centers was also investigated by double-labeling, showing that only a part of these afferents were cholinergic or monoaminergic. Comparisons between the areas indicate that areas 24a and 24b receive qualitatively similar inputs, but with different densities. These differences are more pronounced when comparing the inputs to ACC's areas 24a/24b to the inputs to MCC's areas 24a'/24b'. These results provide a complete analysis of the afferents to the mouse areas 24a/24b and 24a'/24b', which shows important similarity with the connectivity of homologous areas in rats, and brings the anatomical basis necessary to address the roles of cingulate areas in mice.
Asunto(s)
Mapeo Encefálico , Giro del Cíngulo/anatomía & histología , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Animales , Mapeo Encefálico/métodos , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Toxina del Cólera/metabolismo , Colina O-Acetiltransferasa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Serotonina/metabolismo , Estilbamidinas/metabolismo , Tirosina 3-MonooxigenasaRESUMEN
Electrophysiological evidence suggests that the spinoparabrachioamygdaloid pathway carries nociceptive information that may be important for the elaboration of physiological and emotional responses to noxious events. The pontine parabrachial nucleus (pPB) sends a massive projection to the central nucleus of the amygdala (CeA) and lateral bed nucleus of the stria terminalis (BSTL), both regions belonging to a broader macrostructure, the central extended amygdala (EAc). The aim of this study was to examine whether different EAc components are targeted by a same pPB neuron, by reconstructing single axonal branching patterns after anterograde labelling. Small deposits of biotinylated dextran amine in the region of the external lateral pPB result in dense and specific labelling in the whole EAc. Reconstructed axons innervate either the lateral or the capsular part of the CeA with perisomatic or bushy terminals, respectively. A subset of axons enters the stria terminalis rostrally to follow its trajectory caudally toward the CeA. Individual axons targeting the CeA usually send collaterals to other EAc components, especially those projecting to the lateral CeA, which often coinnervate the BSTL. By contrast, only few branches were found outside the EAc. These results suggest that the noxious information travelling from the pPB to the CeA may also be transmitted to other EAc components. This pPB-EAc pathway, which appears distinct from the parabrachiohypothalamic and parabrachiothalamic projections, would be the anatomical basis through which the EAc elaborates the autonomic, endocrine, and emotional components of pain.
Asunto(s)
Amígdala del Cerebelo/ultraestructura , Axones/ultraestructura , Vías Nerviosas/ultraestructura , Puente/ultraestructura , Animales , Procesamiento de Imagen Asistido por Computador , Masculino , Microscopía Electrónica de Transmisión , Neuronas/ultraestructura , Ratas , Ratas Sprague-Dawley , Núcleos Septales/ultraestructuraRESUMEN
Opioid receptors are G protein-coupled receptors (GPCRs) that modulate brain function at all levels of neural integration, including autonomic, sensory, emotional and cognitive processing. Mu (MOR) and delta (DOR) opioid receptors functionally interact in vivo, but whether interactions occur at circuitry, cellular or molecular levels remains unsolved. To challenge the hypothesis of MOR/DOR heteromerization in the brain, we generated redMOR/greenDOR double knock-in mice and report dual receptor mapping throughout the nervous system. Data are organized as an interactive database offering an opioid receptor atlas with concomitant MOR/DOR visualization at subcellular resolution, accessible online. We also provide co-immunoprecipitation-based evidence for receptor heteromerization in these mice. In the forebrain, MOR and DOR are mainly detected in separate neurons, suggesting system-level interactions in high-order processing. In contrast, neuronal co-localization is detected in subcortical networks essential for survival involved in eating and sexual behaviors or perception and response to aversive stimuli. In addition, potential MOR/DOR intracellular interactions within the nociceptive pathway offer novel therapeutic perspectives.
Asunto(s)
Encéfalo/metabolismo , Red Nerviosa/metabolismo , Neuronas/metabolismo , Receptores Opioides delta/análisis , Receptores Opioides mu/análisis , Animales , Femenino , Técnicas de Sustitución del Gen , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
In freely moving rats, whisking is associated with a slow modulation of neuronal excitability in the primary somatosensory cortex. Because it persists after the blockade of vibrissa input, it was suggested that the slow modulation might be mediated by motor-sensory corticocortical connections and perhaps result from the corollary discharges of corticofugal cells. In the present study, we identified motor cortical cells that project to the barrel field and reconstructed their axonal projections after juxtacellularly staining single cells with a biotinylated tracer. On the basis of the final destination of main axons, two groups of neurons contribute to motor-sensory projections: callosal cells (87.5%) and corticofugal cells (12.5%). Axon collaterals of callosal cells arborize in layers five to six of the granular and dysgranular zones and give off several branches that ascend between the barrels to ramify in the molecular layer. In contrast, the axon collaterals of corticofugal cells do not ramify in the infragranular layers but in layer 1. The origin of the majority of motor sensory projections from callosally projecting cells does not support the notion that the slow modulation results from the corollary discharges of corticofugal axons. It would rather originate from a separate population of cells, which could output the slow signal to the barrel field in parallel with the corticofugal commands to a brainstem pattern generator. As free whisking is characterized by bilateral concerted movements of the vibrissae, the transcallosal contribution of motor-sensory axons represents a substrate for synchronizing the slow modulation across both hemispheres.
Asunto(s)
Biotina/análogos & derivados , Corteza Motora/citología , Vías Nerviosas/citología , Neuronas/metabolismo , Vibrisas/inervación , Animales , Axones/metabolismo , Biotina/farmacocinética , Mapeo Encefálico , Dextranos/farmacocinética , Colorantes Fluorescentes/farmacocinética , Ratas , Ratas Sprague-Dawley , Corteza Somatosensorial/citología , Corteza Somatosensorial/fisiología , Vibrisas/citología , Vibrisas/fisiologíaRESUMEN
Cerebrospinal fluid-contacting neurons (CSFcNs) occur in various brain regions of lower vertebrates. In mammals, they are restricted to medullospinal areas, and little is known about their projection sites. In the present work, we investigated some morphofunctional characteristics of such neurons in the rat spinal cord by light and electron microscopic immunocytochemistry. CSFcNs expressing the P2X(2) subunit of purinergic receptors were present throughout the spinal cord, though more numerous at lower thoracolumbar and sacral levels. These neurons coexpressed GAD and the polysialylated neural cell adhesion molecule (PSA-NCAM), a marker of cellular plasticity. From low thoracic levels downward, tiny amyelinic axons (less than 200 nm in diameter) were tightly packed in bundles, which ran along the ependyma and extended ventrally, eventually concentrating against the walls of the ventral median fissure. In addition to P2X(2), GAD, gamma-aminobutyric acid (GABA), and PSA, these axons expressed GAP-43 immunoreactivity. Moreover, they were labelled along their entire lengths with antibodies against synaptotagmin and synaptophysin, but these failed to reveal intraspinal terminal fields. Taken together, our observations indicate the presence in the rat spinal cord of a highly plastic system of GABAergic CSFcNs that express the P2X(2) subunit of purinergic receptors. The function of this original system remains open to question. In these neurons, the P2X(2) receptors may confer a sensitivity to ATP either present in the CSF or released by nearby neurons of the central autonomic area.
Asunto(s)
Proteína GAP-43/análisis , Molécula L1 de Adhesión de Célula Nerviosa/análisis , Neuronas/citología , Receptores Purinérgicos P2/análisis , Ácidos Siálicos/análisis , Médula Espinal/citología , Ácido gamma-Aminobutírico/fisiología , Animales , Femenino , Técnicas para Inmunoenzimas , Inmunohistoquímica , Masculino , Microscopía Inmunoelectrónica , Neuronas/ultraestructura , Subunidades de Proteína/análisis , Ratas , Ratas Sprague-Dawley , Receptores Purinérgicos P2X2RESUMEN
Opioid receptors belong to the G protein coupled receptor family. They modulate brain function at all levels of neural integration and therefore impact on autonomous, sensory, emotional and cognitive processing. In vivo functional interaction between mu and delta opioid receptors are known to take place though it is still debated whether interactions occur at circuitry, cellular or molecular level. Also, the notion of receptor crosstalk via mu-delta heteromers is well documented in vitro but in vivo evidence remains scarce. To identify neurons in which receptor interactions could take place, we designed a unique double mutant knock-in mouse line that expresses functional red-fluorescent mu receptors and green-fluorescent delta receptors. We mapped mu and delta receptor distribution and co-localization throughout the nervous system and created the first interactive brain atlas with concomitant mu-delta visualization at subcellular resolution (http://mordor.ics-mci.fr/). Mu and delta receptors co-localize in neurons from subcortical networks but are mainly detected in separate neurons in the forebrain. Also, co-immunoprecipitation experiments indicated physical proximity in the hippocampus, a prerequisite to mu-delta heteromerization. Altogether, data suggest that mu-delta functional interactions take place at systems level for high-order emotional and cognitive processing whereas mu-delta may interact at cellular level in brain networks essential for survival, which has potential implications for innovative drug design in pain control, drug addiction and eating disorders.
RESUMEN
Midbrain dopamine neurons are implicated in various psychiatric and neurological disorders. The GABAergic tail of the ventral tegmental area (tVTA), also named the rostromedial tegmental nucleus (RMTg), displays dense projections to the midbrain and exerts electrophysiological control over dopamine cells of the VTA. However, the influence of the tVTA on the nigrostriatal pathway, from the substantia nigra pars compacta (SNc) to the dorsal striatum, and on related functions remains to be addressed. The present study highlights the role played by the tVTA as a GABA brake for the nigrostriatal system, demonstrating a critical influence over motor functions. Using neuroanatomical approaches with tract tracing and electron microscopy, we reveal the presence of a tVTA-SNc-dorsal striatum pathway. Using in vivo electrophysiology, we prove that the tVTA is a major inhibitory control center for SNc dopamine cells. Using behavioral approaches, we demonstrate that the tVTA controls rotation behavior, motor coordination, and motor skill learning. The motor enhancements observed after ablation of the tVTA are in this regard comparable with the performance-enhancing properties of amphetamine, a drug used in doping. These findings demonstrate that the tVTA is a major GABA brake for nigral dopamine systems and nigrostriatal functions, and they raise important questions about how the tVTA is integrated within the basal ganglia circuitry. They also warrant further research on the tVTA's role in motor and dopamine-related pathological contexts such as Parkinson's disease.
Asunto(s)
Neuronas Dopaminérgicas/fisiología , Desempeño Psicomotor/fisiología , Sustancia Negra/fisiología , Área Tegmental Ventral/fisiología , Animales , Estimulantes del Sistema Nervioso Central/farmacología , Dextroanfetamina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Aprendizaje/fisiología , Masculino , Microelectrodos , Microscopía Electrónica , Inhibición Neural/fisiología , Vías Nerviosas/anatomía & histología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Técnicas de Trazados de Vías Neuroanatómicas , Desempeño Psicomotor/efectos de los fármacos , Ratas Sprague-Dawley , Rotación , Sustancia Negra/anatomía & histología , Sustancia Negra/efectos de los fármacos , Área Tegmental Ventral/anatomía & histología , Área Tegmental Ventral/efectos de los fármacosRESUMEN
The amygdala is a structure of the temporal lobe thought to be involved in assigning emotional significance to environmental information and triggering adapted physiological, behavioral and affective responses. A large body of literature in animals and human implicates the amygdala in fear. Pain having a strong affective and emotional dimension, the amygdala, especially its central nucleus (CeA), has also emerged in the last twenty years as key element of the pain matrix. The CeA receives multiple nociceptive information from the brainstem, as well as highly processed polymodal information from the thalamus and the cerebral cortex. It also possesses the connections that allow influencing most of the descending pain control systems as well as higher centers involved in emotional, affective and cognitive functions. Preclinical studies indicate that the integration of nociceptive inputs in the CeA only marginally contributes to sensory-discriminative components of pain, but rather contributes to associated behavior and affective responses. The CeA doesn't have a major influence on responses to acute nociception in basal condition, but it induces hypoalgesia during aversive situation, such as stress or fear. On the contrary, during persistent pain states (inflammatory, visceral, neuropathic), a long-lasting functional plasticity of CeA activity contributes to an enhancement of the pain experience, including hyperalgesia, aversive behavioral reactions and affective anxiety-like states.
RESUMEN
BACKGROUND AND PURPOSE: The tail of the ventral tegmental area (tVTA), also called the rostromedial tegmental nucleus, is a newly defined brain structure and a potential control centre for dopaminergic activity. It was identified by the induction of DeltaFosB following chronic cocaine exposure. In this work, we screened 20 drugs for their ability to induce FosB/DeltaFosB in the tVTA. EXPERIMENTAL APPROACH: Immunohistochemistry following systemic drug administration was used to study FosB/DeltaFosB induction in the tVTA of adult rats. Double-staining was used to determine whether dopamine or GABA neurones are involved in this induction. KEY RESULTS: The acute injection of the psychostimulant drugs cocaine, D-amphetamine, (+/-)-3,4-methylenedioxymethamphetamine (MDMA), methylphenidate or caffeine, induced the expression of FosB/DeltaFosB in the tVTA GABAergic cells. No induction was observed following exposure to ethanol, diazepam, γ-hydroxybutyric acid (GHB), morphine, ketamine, phencyclidine (PCP), Δ(9)-tetrahydrocannabinol (THC), sodium valproic acid or gabapentin. To evaluate the role of monoamine transporters in the psychostimulant-induced expression of FosB/DeltaFosB, we tested the antidepressant drugs reboxetine, nortriptyline, fluoxetine and venlafaxine (which target the noradrenaline and/or the 5-hydroxytryptamine transporters), the 5-hydroxytryptamine releasing agent dexfenfluramine, and the dopamine transporter inhibitor GBR12909. Only GBR12909 was able to induce FosB/DeltaFosB expression in the tVTA, showing that this induction is mediated by dopamine. CONCLUSIONS AND IMPLICATIONS: Newly described brain structures may help to increase our knowledge of brain function, pathology and targets for treatments. FosB/DeltaFosB induction in the tVTA is a common feature of drugs sharing psychostimulant properties but not of drugs sharing risk of abuse.
Asunto(s)
Estimulantes del Sistema Nervioso Central/farmacología , Psicotrópicos/farmacología , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Masculino , Neuronas/metabolismo , Piperazinas/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-DawleyRESUMEN
BACKGROUND: The transcription factor DeltaFosB is implicated in the plasticity induced by drugs of abuse. We showed that psychostimulants induce DeltaFosB in gamma-aminobutyric acid (GABA) cells of a caudal subregion of the ventral tegmental area (VTA) that was named tail of the VTA (tVTA). Although tVTA mostly shares VTA inputs, its outputs remain to be characterized. METHODS: The tVTA efferents were studied by iontophoretic injections of the anterograde tracer biotinylated dextran amine (BDA). To further study VTA inputs arising from tVTA, injections of the retrograde tracer Fluoro-Gold were combined with multiple labeling by immunohistochemistry in rats treated with cocaine. Indirect projections from the tVTA to the nucleus accumbens were assessed with a double-tracing approach, cholera toxin B subunit (CTB) being delivered in the nucleus accumbens and BDA in the tVTA. RESULTS: Tract-tracing studies showed that tVTA heavily projects to the midbrain dopaminergic system and revealed terminal appositions with dopamine cells in the VTA. Double-labeling studies demonstrated that this tVTA output is mostly GABAergic, includes cells in which cocaine exposure induces DeltaFosB, and displays appositions to dopamine cells projecting to the nucleus accumbens. CONCLUSIONS: The GABA neurons expressing DeltaFosB in the tVTA after cocaine exposure project to the dopamine mesolimbic neurons.