RESUMEN
Global spread and regional endemicity of H5Nx Goose/Guangdong avian influenza viruses (AIV) pose a continuous threat for poultry production and zoonotic, potentially pre-pandemic, transmission to humans. Little is known about the role of mutations in the viral neuraminidase (NA) that accompanied bird-to-human transmission to support AIV infection of mammals. Here, after detailed analysis of the NA sequence of human H5N1 viruses, we studied the role of A46D, L204M, S319F and S430G mutations in virus fitness in vitro and in vivo. Although H5N1 AIV carrying avian- or human-like NAs had similar replication efficiency in avian cells, human-like NA enhanced virus replication in human airway epithelia. The L204M substitution consistently reduced NA activity of H5N1 and nine other influenza viruses carrying NA of groups 1 and 2, indicating a universal effect. Compared to the avian ancestor, human-like H5N1 virus has less NA incorporated in the virion, reduced levels of viral NA RNA replication and NA expression. We also demonstrate increased accumulation of NA at the plasma membrane, reduced virus release and enhanced cell-to-cell spread. Furthermore, NA mutations increased virus binding to human-type receptors. While not affecting high virulence of H5N1 in chickens, the studied NA mutations modulated virulence and replication of H5N1 AIV in mice and to a lesser extent in ferrets. Together, mutations in the NA of human H5N1 viruses play different roles in infection of mammals without affecting virulence or transmission in chickens. These results are important to understand the genetic determinants for replication of AIV in mammals and should assist in the prediction of AIV with zoonotic potential.
Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Gripe Humana , Humanos , Animales , Ratones , Subtipo H5N1 del Virus de la Influenza A/genética , Neuraminidasa/genética , Neuraminidasa/metabolismo , Pollos/metabolismo , Hurones , Virus de la Influenza A/metabolismo , Mutación , Gripe Humana/genéticaRESUMEN
Highly pathogenic (HP) avian influenza viruses (AIVs) are naturally restricted to H5 and H7 subtypes with a polybasic cleavage site (CS) in hemagglutinin (HA) and any AIV with an intravenous pathogenicity index (IVPI) ≥ 1.2. Although only a few non-H5/H7 viruses fulfill the criteria of HPAIV; it remains unclear why these viruses did not spread in domestic birds. In 2012, a unique H4N2 virus with a polybasic CS 322PEKRRTR/G329 was isolated from quails in California which, however, was avirulent in chickens. This is the only known non-H5/H7 virus with four basic amino acids in the HACS. Here, we investigated the virulence of this virus in chickens after expansion of the polybasic CS by substitution of T327R (322PEKRRRR/G329) or T327K (322PEKRRKR/G329) with or without reassortment with HPAIV H5N1 and H7N7. The impact of single mutations or reassortment on virus fitness in vitro and in vivo was studied. Efficient cell culture replication of T327R/K carrying H4N2 viruses increased by treatment with trypsin, particularly in MDCK cells, and reassortment with HPAIV H5N1. Replication, virus excretion and bird-to-bird transmission of H4N2 was remarkably compromised by the CS mutations, but restored after reassortment with HPAIV H5N1, although not with HPAIV H7N7. Viruses carrying the H4-HA with or without R327 or K327 mutations and the other seven gene segments from HPAIV H5N1 exhibited high virulence and efficient transmission in chickens. Together, increasing the number of basic amino acids in the H4N2 HACS was detrimental for viral fitness particularly in vivo but compensated by reassortment with HPAIV H5N1. This may explain the absence of non-H5/H7 HPAIV in poultry.
Asunto(s)
Pollos/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Virus de la Influenza A/genética , Gripe Aviar/transmisión , Sustitución de Aminoácidos , Animales , Perros , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Virus de la Influenza A/patogenicidad , Gripe Aviar/patología , Gripe Aviar/virología , Células de Riñón Canino Madin Darby , VirulenciaRESUMEN
Zoonotic highly pathogenic avian influenza viruses (HPAIV) have raised serious public health concerns of a novel pandemic. These strains emerge from low-pathogenic precursors by the acquisition of a polybasic hemagglutinin (HA) cleavage site, the prime virulence determinant. However, required coadaptations of the HA early in HPAIV evolution remained uncertain. To address this question, we generated several HA1/HA2 chimeras and point mutants of an H5N1 clade 2.2.2 HPAIV and an H5N1 low-pathogenic strain. Initial surveys of 3,385 HPAIV H5 HA sequences revealed frequencies of 0.5% for the single amino acids 123R and 124I but a frequency of 97.5% for the dual combination. This highly conserved dual motif is still retained in contemporary H5 HPAIV, including the novel H5NX reassortants carrying neuraminidases of different subtypes, like the H5N8 and the zoonotic H5N6 strains. Remarkably, the earliest Asian H5N1 HPAIV, the Goose/Guangdong strains from 1996/1997, carried 123R only, whereas 124I appeared later in 1997. Experimental reversion in the HPAIV HA to the two residues 123S and124T, characteristic of low-pathogenic strains, prevented virus rescue, while the single substitutions attenuated the virus in both chicken and mice considerably, accompanied by a decreased HA fusion pH. This increased pH sensitivity of H5 HPAIV enables HA-mediated membrane fusion at a higher endosomal pH. Therefore, this HA adaptation may permit infection of cells with less-acidic endosomes, e.g., within the respiratory tract, resulting in an extended organ tropism. Taken together, HA coadaptation to increased acid sensitivity promoted the early evolution of H5 Goose/Guangdong-like HPAIV strains and is still required for their zoonotic potential.IMPORTANCE Zoonotic highly pathogenic avian influenza viruses (HPAIV) have raised serious public health concerns of a novel pandemic. Their prime virulence determinant is the polybasic hemagglutinin (HA) cleavage site. However, required coadaptations in the HA (and other genes) remained uncertain. Here, we identified the dual motif 123R/124I in the HA head that increases the activation pH of HA-mediated membrane fusion, essential for virus genome release into the cytoplasm. This motif is extremely predominant in H5 HPAIV and emerged already in the earliest 1997 H5N1 HPAIV. Reversion to 123S or 124T, characteristic of low-pathogenic strains, attenuated the virus in chicken and mice, accompanied by a decreased HA activation pH. This increased pH sensitivity of H5 HPAIV extends the viral tropism to cells with less-acidic endosomes, e.g., within the respiratory tract. Therefore, early HA adaptation to increased acid sensitivity promoted the emergence of H5 Goose/Guangdong-like HPAIV strains and is required for their zoonotic potential.
Asunto(s)
Secuencia Conservada , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Internalización del Virus , Animales , Análisis por Conglomerados , Evolución Molecular , Gansos , Concentración de Iones de Hidrógeno , Filogenia , Análisis de Secuencia de ADN , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismoRESUMEN
After high mortality rates among commercial poultry were reported in Egypt in 2017, we genetically characterized 4 distinct influenza A(H5N8) viruses isolated from poultry. Full-genome analysis indicated separate introductions of H5N8 clade 2.3.4.4 reassortants from Europe and Asia into Egypt, which poses a serious threat for poultry and humans.
Asunto(s)
Subtipo H5N8 del Virus de la Influenza A/genética , Gripe Aviar/virología , Enfermedades de las Aves de Corral/virología , Aves de Corral , Secuencia de Aminoácidos , Animales , Biomarcadores , Egipto/epidemiología , Hemaglutininas/química , Hemaglutininas/genética , Hemaglutininas/metabolismo , Subtipo H5N8 del Virus de la Influenza A/patogenicidad , Gripe Aviar/epidemiología , Filogenia , Enfermedades de las Aves de Corral/epidemiología , VirulenciaRESUMEN
UNLABELLED: In 1999, after circulation for a few months in poultry in Italy, low-pathogenic (LP) avian influenza (AI) H7N1 virus mutated into a highly pathogenic (HP) form by acquisition of a unique multibasic cleavage site (mCS), PEIPKGSRVRR*GLF (asterisk indicates the cleavage site), in the hemagglutinin (HA) and additional alterations with hitherto unknown biological function. To elucidate these virulence-determining alterations, recombinant H7N1 viruses carrying specific mutations in the HA of LPAI A/chicken/Italy/473/1999 virus (Lp) and HPAI A/chicken/Italy/445/1999 virus (Hp) were generated. Hp with a monobasic CS or carrying the HA of Lp induced only mild or no disease in chickens, thus resembling Lp. Conversely, Lp with the HA of Hp was as virulent and transmissible as Hp. While Lp with a multibasic cleavage site (Lp_CS445) was less virulent than Hp, full virulence was exhibited when HA2 was replaced by that of Hp. In HA2, three amino acid differences consistently detected between LP and HP H7N1 viruses were successively introduced into Lp_CS445. Q450L in the HA2 stem domain increased virulence and transmission but was detrimental to replication in cell culture, probably due to low-pH activation of HA. A436T and/or K536R restored viral replication in vitro and in vivo. Viruses possessing A436T and K536R were observed early in the HPAI outbreak but were later superseded by viruses carrying all three mutations. Together, besides the mCS, stepwise mutations in HA2 increased the fitness of the Italian H7N1 virus in vivo. The shift toward higher virulence in the field was most likely gradual with rapid optimization. IMPORTANCE: In 1999, after 9 months of circulation of low-pathogenic (LP) avian influenza virus (AIV), a devastating highly pathogenic (HP) H7N1 AIV emerged in poultry, marking the largest epidemic of AIV reported in a Western country. The HPAIV possessed a unique multibasic cleavage site (mCS) complying with the minimum motif for HPAIV. The main finding in this report is the identification of three mutations in the HA2 domain that are required for replication and stability, as well as for virulence, transmission, and tropism of H7N1 in chickens. In addition to the mCS, Q450L was required for full virulence and transmissibility of the virus. Nonetheless, it was detrimental to virus replication and required A436T and/or K536R to restore replication, systemic spread, and stability. These results are important for better understanding of the evolution of highly pathogenic avian influenza viruses from low-pathogenic precursors.
Asunto(s)
Hemaglutininas Virales/genética , Hemaglutininas Virales/metabolismo , Subtipo H7N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H7N1 del Virus de la Influenza A/genética , Gripe Aviar/patología , Gripe Aviar/virología , Mutación Missense , Animales , Pollos , Italia , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Recombinación Genética , Genética Inversa , VirulenciaRESUMEN
BACKGROUND: Vaccination of poultry to control highly pathogenic avian influenza virus (HPAIV) H5N1 is used in several countries. HPAIV H5N1 of clade 2.2.1 which is endemic in Egypt has diversified into two genetic clades. Clade 2.2.1.1 represents antigenic drift variants in vaccinated commercial poultry while clade 2.2.1.2 variants are detected in humans and backyard poultry. Little is known about H5N1 infection in vaccinated turkeys under field conditions. CASE PRESENTATION: Here, we describe an HPAI H5N1 outbreak in a vaccinated meat-turkey flock in Egypt. Birds were vaccinated with inactivated H5N2 and H5N1 vaccines at 8 and 34 days of age, respectively. At 72nd day of age (38 days post last vaccination), turkeys exhibited mild respiratory signs, cyanosis of snood and severe congestion of the internal organs. Survivors had a reduction in feed consumption and body gain. A mortality of ~29% cumulated within 10 days after the onset of clinical signs. Laboratory diagnosis using RT-qPCRs revealed presence of H5N1 but was negative for H7 and H9 subtypes. A substantial antigenic drift against different serum samples from clade 2.2.1.1 and clade 2.3.4.4 was observed. Based on full genome sequence analysis the virus belonged to clade 2.2.1.2 but clustered with recent H5N1 viruses from 2015 in poultry in Israel, Gaza and Egypt in a novel subclade designated here 2.2.1.2a which is distinct from 2014/2015 2.2.1.2 viruses. These viruses possess 2.2.1.2 clade-specific genetic signatures and also mutations in the HA similar to those in clade 2.2.1.1 that enabled evasion from humoral immune response. Taken together, this manuscript describes a recent HPAI H5N1 outbreak in vaccinated meat-turkeys in Egypt after infection with a virus representing novel distinct 2.2.1.2a subclade. CONCLUSIONS: Infection with HPAIV H5N1 in commercial turkeys resulted in significant morbidity and mortality despite of vaccination using H5 vaccines. The isolated virus showed antigenic drift and clustered in a novel cluster designated here 2.2.1.2a related to viruses in poultry in Israel, Gaza and Egypt. Enforcement of biosecurity and constant update of vaccine virus strains may be helpful to protect vaccinated birds and prevent spillover infection to neighbouring countries.
Asunto(s)
Brotes de Enfermedades , Genotipo , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/epidemiología , Gripe Aviar/virología , Animales , Antígenos Virales/genética , Antígenos Virales/inmunología , Análisis por Conglomerados , Egipto/epidemiología , Flujo Genético , Genoma Viral , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Aviar/mortalidad , Gripe Aviar/patología , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Análisis de Supervivencia , PavosRESUMEN
Highly pathogenic H5N1 avian influenza virus (A/H5N1) devastated the poultry industry and continues to pose a pandemic threat. Studying the progressive genetic changes in A/H5N1 after long-term circulation in poultry may help us to better understand A/H5N1 biology in birds. A/H5N1 clade 2.2.1.1 antigenic drift viruses have been isolated from vaccinated commercial poultry in Egypt. They exhibit a peculiar stepwise accumulation of glycosylation sites (GS) in the haemagglutinin (HA) with viruses carrying, beyond the conserved 5 GS, additional GS at amino acid residues 72, 154, 236 and 273 resulting in 6, 7, 8 or 9 GS in the HA. Available information about the impact of glycosylation on virus fitness and pathobiology is mostly derived from mammalian models. Here, we generated recombinant viruses imitating the progressive acquisition of GS in HA and investigated their biological relevance in vitro and in vivo. Our in vitro results indicated that the accumulation of GS correlated with increased glycosylation, increased virus replication, neuraminidase activity, cell-to-cell spread and thermostability, however, strikingly, without significant impact on virus escape from neutralizing antibodies. In vivo, glycosylation modulated virus virulence, tissue tropism, replication and chicken-to-chicken transmission. Predominance in the field was towards viruses with hyperglycosylated HA. Together, progressive glycosylation of the HA may foster persistence of A/H5N1 by increasing replication, stability and bird-to-bird transmission without significant impact on antigenic drift.
Asunto(s)
Variación Antigénica , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H5N1 del Virus de la Influenza A/fisiología , Gripe Aviar/transmisión , Enfermedades de las Aves de Corral/virología , Replicación Viral , Secuencias de Aminoácidos , Animales , Pollos , Egipto , Glicosilación , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Filogenia , VirulenciaRESUMEN
High-pathogenic avian influenza viruses (HPAIVs) evolve from low-pathogenic precursors specifying the HA serotypes H5 or H7 by acquisition of a polybasic HA cleavage site. As the reason for this serotype restriction has remained unclear, we aimed to distinguish between compatibility of a polybasic cleavage site with H5/H7 HA only and unique predisposition of these two serotypes for insertion mutations. To this end, we introduced a polybasic cleavage site into the HA of several low-pathogenic avian strains with serotypes H1, H2, H3, H4, H6, H8, H10, H11, H14, or H15, and rescued HA reassortants after cotransfection with the genes from either a low-pathogenic H9N2 or high-pathogenic H5N1 strain. Oculonasal inoculation with those reassortants resulted in varying pathogenicity in chicken. Recombinants containing the engineered H2, H4, H8, or H14 in the HPAIV background were lethal and exhibited i.v. pathogenicity indices of 2.79, 2.37, 2.85, and 2.61, respectively, equivalent to naturally occurring H5 or H7 HPAIV. Moreover, the H2, H4, and H8 reassortants were transmitted to some contact chickens. The H2 reassortant gained two mutations in the M2 proton channel gate region, which is affected in some HPAIVs of various origins. Taken together, in the presence of a polybasic HA cleavage site, non-H5/H7 HA can support a highly pathogenic phenotype in the appropriate viral background, indicating requirement for further adaptation. Therefore, the restriction of natural HPAIV to serotypes H5 and H7 is likely a result of their unique predisposition for acquisition of a polybasic HA cleavage site.
Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/fisiología , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Animales , Aves , Virus de la Influenza A/patogenicidadRESUMEN
Reducing the cost of vaccine production is a key priority for veterinary research, and the possibility of heterologously expressing antigen in plants provides a particularly attractive means of achieving this. Here, we report the expression of the avian influenza virus haemagglutinin (AIV HA) in tobacco, both as a monomer and as a trimer in its native and its ELPylated form. We firstly presented evidence to produce stabilized trimers of soluble HA in plants. ELPylation of these trimers does not influence the trimerization. Strong expression enhancement in planta caused by ELPylation was demonstrated for trimerized H5-ELP. ELPylated trimers could be purified by a membrane-based inverse transition cycling procedure with the potential of successful scale-up. The trimeric form of AIV HA was found to enhance the HA-specific immune response compared with the monomeric form. Plant-derived AIV HA trimers elicited potentially neutralizing antibodies interacting with both homologous virus-like particles from plants and heterologous inactivated AIV. ELPylation did not influence the functionality and the antigenicity of the stabilized H5 trimers. These data allow further developments including scale-up of production, purification and virus challenge experiments with the final goal to achieve suitable technologies for efficient avian flu vaccine production.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Elastina/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/biosíntesis , Subtipo H5N1 del Virus de la Influenza A/inmunología , Nicotiana/metabolismo , Infecciones por Orthomyxoviridae/inmunología , Animales , Ensayo de Inmunoadsorción Enzimática , Adyuvante de Freund/inmunología , Pruebas de Inhibición de Hemaglutinación , Pruebas de Hemaglutinación , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/aislamiento & purificación , Inmunidad , Ratones , Infecciones por Orthomyxoviridae/virología , Plantas Modificadas Genéticamente , Estructura Cuaternaria de Proteína , Nicotiana/genética , Transgenes/genética , Vacunación , Virión/inmunologíaRESUMEN
Herpesvirus envelope proteins are of particular interest for development of attenuated live, marker, and subunit vaccines, as well as development of diagnostic tools. The unique short genome region of the chicken pathogen infectious laryngotracheitis virus (ILTV, Gallid herpesvirus 1) contains a cluster of six conserved alphaherpesvirus genes encoding membrane proteins, of which up to now only glycoproteins gG and gJ have been analyzed in detail. We have now prepared monospecific rabbit antisera against ILTV gD, gE, and gI, and the ILTV type II membrane protein pUS9, each of which showed specific immunofluorescence reactions, and detected proteins of approximately 65 and 70 kDa (gD), 62 kDa (gI), 75 kDa (gE), or 37 kDa (pUS9) in western blot analyses of infected chicken cells. The proteins gD, gI, and gE, but not pUS9, were identified as abundant virion proteins, and gE and gI were shown to be N-glycosylated. We also isolated gE-, gI-, and pUS9-deleted ILTV recombinants, whereas it was not possible to purify gD-negative ILTV to homogeneity, indicating that gD, like in other alphaherpesviruses, is essential for receptor binding and virus entry. The pUS9-deleted ILTV exhibited almost wild-type-like replication properties in cell culture. The gE- and gI-negative viruses showed significantly reduced plaque sizes, whereas virus titers were barely affected. Since homologous gene-deletion mutants of other alphaherpesviruses are in use as live vaccines, the generated ILTV recombinants might be also suitable for this application.
Asunto(s)
Pollos , Infecciones por Herpesviridae/prevención & control , Herpesvirus Gallináceo 1/genética , Enfermedades de las Aves de Corral/prevención & control , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Western Blotting/veterinaria , Células Cultivadas , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Herpesvirus Gallináceo 1/metabolismo , Vacunas contra la Enfermedad de Marek/genética , Microscopía Fluorescente/veterinaria , Sistemas de Lectura Abierta , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/virología , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vacunas Atenuadas/genética , Proteínas de la Matriz Viral/química , Virión/química , Replicación ViralRESUMEN
H5N1 highly pathogenic avian influenza viruses (HPAIV) of clade 2.2 spread from Southeast Asia to Europe. Intriguingly, in contrast to all common avian strains specifying glutamic acid at position 627 of the PB2 protein (PB2-627E), they carry a lysine at this position (PB2-627K), which is normally found only in human strains. To analyze the impact of this mutation on the host range of HPAIV H5N1, we altered PB2-627K to PB2-627E in the European isolate A/Swan/Germany/R65/2006 (R65). In contrast to the parental R65, multicycle growth and polymerase activity of the resulting mutant R65-PB2(K627E) were considerably impaired in mammalian but not in avian cells. Correspondingly, the 50% lethal dose (LD50) in mice was increased by three orders of magnitude, whereas virulence in chicken remained unchanged, resulting in 100% lethality, as was found for the parental R65. Strikingly, R65-PB2(K627E) reverted to PB2-627K after only one passage in mice but did not revert in chickens. To investigate whether additional R65 genes influence reversion, we passaged R65-PB2(K627E) reassortants containing genes from A/Hong Kong/156/97 (H5N1) (carrying PB2-627E), in avian and mammalian cells. Reversion to PB2-627K in mammalian cells required the presence of the R65 nucleoprotein (NP). This finding corresponds to results of others that during replication of avian strains in mammalian cells, PB2-627K restores an impaired PB2-NP association. Since this mutation is apparently not detrimental for virus prevalence in birds, it has not been eliminated. However, the prompt reversion to PB2-627K in MDCK cells and mice suggests that the clade 2.2 H5N1 HPAIV may have had a history of intermediate mammalian hosts.
Asunto(s)
Sustitución de Aminoácidos/genética , Especificidad del Huésped , Subtipo H5N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Mutación Missense , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/genética , Animales , Aves , Línea Celular , Pollos , Modelos Animales de Enfermedad , Femenino , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Dosificación Letal Mediana , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/mortalidad , Infecciones por Orthomyxoviridae/virología , Enfermedades de las Aves de Corral/mortalidad , Enfermedades de las Aves de Corral/virología , Enfermedades de los Roedores/mortalidad , Enfermedades de los Roedores/virología , Análisis de SupervivenciaRESUMEN
From infection studies with cultured chicken cells and experimental mammalian hosts, it is well known that influenza viruses use the nonstructural protein 1 (NS1) to suppress the synthesis of interferon (IFN). However, our current knowledge regarding the in vivo role of virus-encoded NS1 in chickens is much more limited. Here, we report that highly pathogenic avian influenza viruses of subtypes H5N1 and H7N7 lacking fully functional NS1 genes were attenuated in 5-week-old chickens. Surprisingly, in diseased birds infected with NS1 mutants, the IFN levels were not higher than in diseased birds infected with wild-type virus, suggesting that NS1 cannot suppress IFN gene expression in at least one cell population of infected chickens that produces large amounts of the cytokine in vivo. To address the question of why influenza viruses are highly pathogenic in chickens although they strongly activate the innate immune system, we determined whether recombinant chicken alpha interferon (IFN-α) can inhibit the growth of highly pathogenic avian influenza viruses in cultured chicken cells and whether it can ameliorate virus-induced disease in 5-week-old birds. We found that IFN treatment failed to confer substantial protection against challenge with highly pathogenic viruses, although it was effective against viruses with low pathogenic potential. Taken together, our data demonstrate that preventing the synthesis of IFN is not the primary role of the viral NS1 protein during infection of chickens. Our results further suggest that virus-induced IFN does not contribute substantially to resistance of chickens against highly pathogenic influenza viruses.
Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/fisiología , Subtipo H7N7 del Virus de la Influenza A/fisiología , Gripe Aviar/metabolismo , Interferones/biosíntesis , Animales , Secuencia de Bases , Pollos , Cartilla de ADN , Inmunohistoquímica , Gripe Aviar/virología , Ratones , Ratones Endogámicos BALB C , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas no Estructurales Virales/fisiologíaRESUMEN
The prime virulence determinant of highly pathogenic avian influenza viruses (HPAIVs) is the polybasic haemagglutinin (HA) cleavage site. However, engineering of a polybasic cleavage site into an avian influenza virus of low pathogenicity does not result in transformation into an HPAIV, indicating the importance of other adaptations. Here, the influence of amino acids adjacent to the HA cleavage site on virulence was studied. Most HPAIVs of subtype H5 carry serine or threonine at position 346 (corresponding to position 323 according to H3 numbering), whereas almost all low-pathogenic H5 viruses have valine. Moreover, all H5 low-pathogenic strains carry threonine at position 351 (corresponding to position 328 according to H3 numbering), suggesting that acquisition of a polybasic cleavage site involves several steps. This study generated a virus mutant derived from HPAIV A/Swan/Germany/R65/06 H5N1 (R65) with a monobasic cleavage site, R65(mono)-S-ER, and the following additional mutants: R65(mono)-V-ER with serine changed to valine at position 346, and R65(mono)-S-ETR and R65(mono)-V-ETR with threonine inserted at position 351. Moreover, in the R65 HA, serine was replaced with valine at position 346 (R65-V). Infection of chickens with R65(mono)-S-ETR or R65(mono)-S-ER led to slight transient respiratory symptoms, whereas R65-infected animals died within 2 days. However, chickens infected with R65-V survived longer than R65-infected animals, indicating that serine 346 in R65 HA contributes to virulence. These data suggest that evolution of H5 HPAIVs from low-pathogenic precursors, besides acquisition of a polybasic cleavage site, involves adaptation of neighbouring regions.
Asunto(s)
Secuencias de Aminoácidos/genética , Hemaglutininas Virales/genética , Hemaglutininas Virales/metabolismo , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Gripe Aviar/patología , Gripe Aviar/virología , Sustitución de Aminoácidos/genética , Animales , Pollos , Alemania , Gripe Aviar/mortalidad , Mutagénesis Insercional , Mutación Missense , Sistema Respiratorio/patología , Sistema Respiratorio/virología , Análisis de Supervivencia , VirulenciaRESUMEN
In the field, highly pathogenic avian influenza viruses (HPAIV) originate from low-pathogenic strains of the haemagglutinin (HA) serotypes H5 and H7 that have acquired a polybasic HA cleavage site. This observation suggests the presence of a cryptic virulence potential of H5 and H7 low-pathogenic avian influenza viruses (LPAIV). Among all other LPAIV, the H9N2 strains are of particular relevance as they have become widespread across many countries in several avian species and have been transmitted to humans. To assess the potential of these strains to transform into an HPAIV, we introduced a polybasic cleavage site into the HA of a contemporary H9N2 isolate. Whereas the engineered polybasic HA cleavage site mutant remained a low-pathogenic strain like its parent virus, a reassortant expressing the modified H9 HA with engineered polybasic cleavage site and all the other genes from an H5N1 HPAIV became highly pathogenic in chicken with an intravenous pathogenicity index of 1.23. These results suggest that an HPAIV with a subtype other than H5 or H7 would only emerge under conditions where the HA gene could acquire a polybasic cleavage site and the other viral genes carry additional virulence determinants.
Asunto(s)
Pollos , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Virus Reordenados/patogenicidad , Secuencias de Aminoácidos , Animales , Línea Celular , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/metabolismo , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H9N2 del Virus de la Influenza A/metabolismo , Ingeniería de Proteínas , Procesamiento Proteico-Postraduccional , Virus Reordenados/genética , Virus Reordenados/metabolismo , Organismos Libres de Patógenos Específicos , VirulenciaRESUMEN
A recombinant Newcastle disease virus (NDV) expressing H6 hemagglutinin (HA) of a low pathogenic avian influenza virus (LPAIV) was generated by reverse genetics (NDVH6). The H6 open reading frame was inserted as an additional transcription unit between the fusion and hemagglutinin-neuraminidase (HN) gene of lentogenic NDV clone 30. Expression of the foreign gene was demonstrated by northern blot, western blot, and indirect immunofluorescence analyses. The protective efficacy against Newcastle disease and avian influenza of subtype H6 was evaluated in 3-wk-old chickens and turkeys. A single vaccination protected specific-pathogen-free (SPF) chickens against a subsequent lethal NDV infection and prevented shedding of AIV after homologous H6 LPAIV infection. Furthermore, vaccinated and AIV-infected animals could be differentiated by detection of AIV nucleoprotein-specific antibodies. Three-week-old commercial turkeys, exhibiting NDV-specific maternal antibodies, were partially protected against a lethal NDV challenge infection. The mortality rate of NDVH6-immunized turkeys was reduced to 40% compared to 90% in unvaccinated birds. After H6 LPAIV infection, shedding in NDVH6-immunized turkeys was only marginally reduced compared to NDV-immunized control birds. We previously described HA-expressing NDV recombinants as potent bivalent vaccines against Newcastle disease and highly pathogenic avian influenza of subtype H5 or H7. The results presented here are in contrast to the high protective efficacy in SPF chickens, as a single vaccination with NDVH6 was insufficient in turkeys in the presence of maternal antibodies against NDV. Therefore, the vector virus has to be improved to overcome these limitations.
Asunto(s)
Pollos , Hemaglutininas/inmunología , Gripe Aviar/prevención & control , Enfermedad de Newcastle/prevención & control , Pavos , Vacunas Virales/inmunología , Animales , Regulación Viral de la Expresión Génica , Hemaglutininas/clasificación , Virus de la Influenza A/clasificación , Gripe Aviar/metabolismo , Virus de la Enfermedad de Newcastle/genética , Vacunas Atenuadas/inmunología , Vacunas SintéticasRESUMEN
To analyze the contribution of neuraminidase (NA) toward protection against avian influenza virus (AIV) infection, three different recombinant Newcastle disease viruses (NDVs) expressing hemagglutinin (HA) or NA, or both, of highly pathogenic avian influenza virus (HPAIV) were generated. The lentogenic NDV Clone 30 was used as backbone for the insertion of HA of HPAIV strain A/chicken/Vietnam/P41/05 (H5N1) and NA of HPAIV strain A/duck/Vietnam/TG24-01/05 (H5N1). The HA was inserted between the genes encoding NDV phosphoprotein (P) and matrixprotein (M), and the NA was inserted between the fusion (F) and hemagglutinin-neuraminidase protein (HN) genes, resulting in NDVH5VmPMN1FHN. Two additional recombinants were constructed carrying the HA gene between the NDV P and M genes (NDVH5VmPM) or the NA between F and HN (NDVN1FHN). All recombinants replicated well and stably expressed the HA gene, the NA gene, or both. Chickens immunized with NDVH5VmPMN1FHN or NDVH5VmPM were protected against two different HPAIV H5N1 and also against HPAIV H5N2. In contrast, immunization of chickens with NDVN1FHN induced NDV- and AIV N1-specific antibodies but did not protect the animals against a lethal dose of HPAIV H5N1. Furthermore, expression of AIV N1, in addition to AIV H5 by NDV, did not increase protection against HPAIV H5N1.
Asunto(s)
Pollos , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N2 del Virus de la Influenza A/inmunología , Gripe Aviar/inmunología , Proteínas Virales/inmunología , Animales , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Vacunas contra la Influenza/inmunología , Neuraminidasa/genética , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/inmunología , Proteínas Virales/genética , Esparcimiento de VirusRESUMEN
To date, only low pathogenic (LP) H5 and H7 avian influenza viruses (AIV) have been observed to naturally shift to a highly pathogenic (HP) phenotype after mutation of the monobasic hemagglutinin (HA) cleavage site (HACS) to polybasic motifs. The LPAIV monobasic HACS is activated by tissue-restricted trypsin-like enzymes, while the HPAIV polybasic HACS is activated by ubiquitous furin-like enzymes. However, glycosylation near the HACS can affect proteolytic activation and reduced virulence of some HPAIV in chickens. In 2012, a unique H4N2 virus with a polybasic HACS was isolated from quails but was LP in chickens. Whether glycosylation sites (GS) near the HACS hinder the evolution of HPAIV H4N2 remains unclear. Here, we analyzed the prevalence of potential GS in the N-terminus of HA1, 2NYT4 and 18NGT20, in all AIV sequences and studied their impact on H4N2 virus fitness. Although the two motifs are conserved, some non-H5/H7 subtypes lack one or both GS. Both sites were glycosylated in this H4N2 virus. Deglycosylation increased trypsin-independent replication in cell culture, cell-to-cell spread and syncytium formation at low-acidic pH, but negatively affected the thermostability and receptor-binding affinity. Alteration of 2NYT4 with or without 18NGT20 enabled systemic spread of the virus to different organs including the brain of chicken embryos. However, all intranasally inoculated chickens did not show clinical signs. Together, although the conserved GS near the HACS are important for HA stability and receptor binding, deglycosylation increased the H4N2 HA-activation, replication and tissue tropism suggesting a potential role for virus adaptation in poultry.
Asunto(s)
Aptitud Genética , Hemaglutininas Virales/metabolismo , Virus de la Influenza A/genética , Virus de la Influenza A/metabolismo , Animales , Encéfalo/virología , Embrión de Pollo , Pollos , Perros , Femenino , Glicosilación , Hemaglutininas Virales/química , Hemaglutininas Virales/genética , Virus de la Influenza A/química , Virus de la Influenza A/clasificación , Células de Riñón Canino Madin Darby , Masculino , Aves de Corral , Tropismo Viral , Virulencia , Replicación ViralRESUMEN
Infectious laryngotracheitis is an important respiratory disease of chickens that is caused by an alphaherpesvirus [infectious laryngotracheitis virus (ILTV); Gallid herpesvirus 1]. As herpesvirus envelope glycoproteins are main targets of the humoral host immune response, they are of particular interest for development of vaccines, as well as of diagnostic tools. The conserved, N-glycosylated envelope protein gC has been identified as a major surface antigen of ILTV. To study the function of gC, we now isolated a gC-deleted ILTV recombinant as well as a gC rescuant after co-transfection of permissive chicken cells with virion DNA and transfer plasmids containing engineered subgenomic fragments. Like other alphaherpesvirus homologues, ILTV gC proved to be non-essential for replication. ILTV-DeltagC exhibited delayed penetration kinetics and slightly reduced plaque sizes in cultured chicken cells, whereas virus titres were not reduced significantly compared with wild-type or gC-rescued virus. In vivo studies revealed that ILTV-DeltagC is attenuated in chickens. However, infection with high doses of ILTV-DeltagC was still fatal for approximately 20 % of the animals, whereas wild-type or gC-rescued ILTV led to 50 % mortality. Interestingly, innate and specific immune responses against ILTV-DeltagC were not reduced but enhanced, and surviving chickens were protected completely against challenge infection. Furthermore, ILTV-DeltagC might serve as a basis for marker vaccines permitting differentiation between vaccinated and field-virus-infected animals, as gC-specific antibodies could be detected easily in sera of animals infected with wild-type ILTV.
Asunto(s)
Herpesvirus Gallináceo 1/fisiología , Proteínas del Envoltorio Viral/fisiología , Animales , Pollos , Genoma Viral , Herpesvirus Gallináceo 1/genética , Herpesvirus Gallináceo 1/inmunología , Herpesvirus Gallináceo 1/patogenicidad , Proteínas del Envoltorio Viral/inmunología , Virulencia , Internalización del Virus , Replicación ViralRESUMEN
Highly pathogenic avian influenza viruses (HPAIV) differ from all other strains by a polybasic cleavage site in their hemagglutinin. All these HPAIV share the H5 or H7 subtype. In order to investigate whether the acquisition of a polybasic cleavage site by an avirulent avian influenza virus strain with a hemagglutinin other than H5 or H7 is sufficient for immediate transformation into an HPAIV, we adapted the hemagglutinin cleavage site of A/Duck/Ukraine/1/1963 (H3N8) to that of the HPAIV A/Chicken/Italy/8/98 (H5N2), A/Chicken/HongKong/220/97 (H5N1), or A/Chicken/Germany/R28/03 (H7N7) and generated the recombinant wild-type and cleavage site mutants. In contrast to the wild type, multicycle replication of these mutants in tissue culture was demonstrated by positive plaque assays and viral multiplication in the absence of exogenous trypsin. Therefore, in vitro all cleavage site mutants resemble an HPAIV. However, in chicken they did not exhibit high pathogenicity, although they could be reisolated from cloacal swabs to some extent, indicating enhanced replication in vivo. These results demonstrate that beyond the polybasic hemagglutinin cleavage site, the virulence of HPAIV in chicken is based on additional pathogenicity determinants within the hemagglutinin itself or in the other viral proteins. Taken together, these observations support the notion that acquisition of a polybasic hemagglutinin cleavage site by an avirulent strain with a non-H5/H7 subtype is only one among several alterations necessary for evolution into an HPAIV.
Asunto(s)
Evolución Molecular , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H3N8 del Virus de la Influenza A/metabolismo , Subtipo H3N8 del Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Animales , Línea Celular , Pollos/virología , Perros , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H3N8 del Virus de la Influenza A/clasificación , Subtipo H3N8 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/metabolismo , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N2 del Virus de la Influenza A/metabolismo , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Subtipo H7N7 del Virus de la Influenza A/metabolismo , Subtipo H7N7 del Virus de la Influenza A/patogenicidad , Mutación/genética , Transgenes/genéticaRESUMEN
BACKGROUND: Infectious bronchitis virus primarily induces a disease of the respiratory system, different IBV strains may show variable tissue tropisms and also affect the oviduct and the kidneys. Proventriculitis was also associated with some new IBV strains. Aim of this study was to investigate by immunohistochemistry (IHC) the tissue tropism of avian infectious bronchitis virus (IBV) strain M41 in experimentally infected chicken embryos. RESULTS: To this end chicken embryos were inoculated in the allantoic sac with 10(3) EID(50) of IBV M41 at 10 days of age. At 48, 72, and 120 h postinoculation (PI), embryos and chorioallantoic membranes (CAM) were sampled, fixed, and paraffin-wax embedded. Allantoic fluid was also collected and titrated in chicken embryo kidney cells (CEK). The sensitivity of IHC in detecting IBV antigens in the CAM of inoculated eggs matched the virus reisolation and detection in CEK. Using IHC, antigens of IBV were detected in nasal epithelium, trachea, lung, spleen, myocardial vasculature, liver, gastrointestinal tract, kidney, skin, sclera of the eye, spinal cord, as well as in brain neurons of the inoculated embryos. These results were consistent with virus isolation and denote the wide tissue tropism of IBV M41 in the chicken embryo. Most importantly, we found infection of vasculature and smooth muscle of the proventriculus which has not seen before with IBV strain M41. CONCLUSION: IHC can be an additional useful tool for diagnosis of IBV infection in chickens and allows further studies to foster a deeper understanding of the pathogenesis of infections with IBV strains of different virulence. Moreover, these results underline that embryonic tissues in addition to CAM could be also used as possible source to generate IBV antigens for diagnostic purposes.