Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Prep Biochem Biotechnol ; : 1-7, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37966162

RESUMEN

Aureobasidium pullulans LB83 is a versatile biocatalyst that produces a plethora of bioactive products thriving on a variety of feedstocks under the varying culture conditions. In our last study using this microorganism, we found cellulase activity (FPase, 2.27 U/ml; CMCase, 7.42 U/ml) and other plant cell wall degrading enzyme activities grown on sugarcane bagasse and soybean meal as carbon source and nitrogen, respectively. In the present study, we provide insights on the secretome analysis of this enzymatic cocktail. The secretome analysis of A. pullulans LB83 by Liquid Chromatography coupled to Mass Spectroscopy (LC-MS/MS) revealed 38 classes of Carbohydrate Active enZymes (CAZymes) of a total of 464 identified proteins. These CAZymes consisted of 21 glycoside hydrolases (55.26%), 12 glycoside hydrolases harboring carbohydrate-binding module (31.58%), 4 carbohydrate esterases (10.53%) and one glycosyl transferase (2.63%). To the best of our knowledge, this is the first report on the secretome analysis of A. pullulans LB83.

2.
Appl Microbiol Biotechnol ; 104(19): 8309-8326, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32813063

RESUMEN

Arabinanases from glycoside hydrolase family GH93 are enzymes with exo-activity that hydrolyze the α-1,5 bonds between arabinose residues present on arabinan. Currently, several initiatives aiming to use byproducts rich in arabinan such as pectin and sugar beet pulp as raw material to produce various compounds of interest are being developed. However, it is necessary to use robust enzymes that have an optimal performance under pH and temperature conditions used in the industrial processes. In this work, the first GH93 from the thermophilic fungus Thermothielavioides terrestris (Abn93T) was heterologously expressed in Aspergillus nidulans, purified and biochemically characterized. The enzyme is a thermophilic glycoprotein (optimum activity at 70 °C) with prolonged stability in acid pHs (4.0 to 6.5). The presence of glycosylation affected slightly the hydrolytic capacity of the enzyme, which was further increased by 34% in the presence of 1 mM CoCl2. Small-angle X-ray scattering results show that Abn93T is a globular-like-shaped protein with a slight bulge at one end. The hydrolytic mechanism of the enzyme was elucidated using capillary zone electrophoresis and molecular docking calculations. Abn93T has an ability to produce (in synergism with arabinofuranosidases) arabinose and arabinobiose from sugar beet arabinan, which can be explored as fermentable sugars and prebiotics. KEY POINTS: • Thermophilic exo-arabinanase from family GH93 • Molecular basis of arabinan depolymerization.


Asunto(s)
Arabinosa , Glicósido Hidrolasas , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Simulación del Acoplamiento Molecular , Sordariales , Especificidad por Sustrato
3.
Bioresour Technol ; 402: 130763, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692377

RESUMEN

The fungus Thermothelomyces thermophilus is a thermotolerant microorganism that has been explored as a reservoir for enzymes (hydrolytic enzymes and oxidoreductases). The functional analysis of a recombinant cellobiose dehydrogenase (MtCDHB) from T. thermophilus demonstrated a thermophilic behavior, an optimal pH in alkaline conditions for inter-domain electron transfer, and catalytic activity on cellooligosaccharides with different degree of polymerization. Its applicability was evaluated to the sustainable production of cellobionic acid (CBA), a potential pharmaceutical and cosmetic ingredient rarely commercialized. Dissolving pulp was used as a disaccharide source for MtCDHB. Initially, recombinant exoglucanases (MtCBHI and MtCBHII) from T. thermophilus hydrolyzed the dissolving pulp, resulting in 87% cellobiose yield, which was subsequently converted into CBA by MtCDHB, achieving a 66% CBA yield after 24 h. These findings highlight the potential of MtCDHB as a novel approach to obtaining CBA through the bioconversion of a plant-based source.


Asunto(s)
Deshidrogenasas de Carbohidratos , Proteínas Recombinantes , Deshidrogenasas de Carbohidratos/metabolismo , Proteínas Recombinantes/metabolismo , Concentración de Iones de Hidrógeno , Disacáridos/biosíntesis , Disacáridos/metabolismo , Temperatura , Celobiosa/metabolismo , Sordariales/enzimología , Hidrólisis , Eurotiales/enzimología
4.
Int J Biol Macromol ; 243: 125002, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37217053

RESUMEN

Enzymatic processing is considered a promising approach for advancing environmentally friendly industrial processes, such as the use of endoglucanase (EG) enzyme in the production of nanocellulose. However, there is ongoing debate regarding the specific properties that make EG pretreatment effective in isolating fibrillated cellulose. To address this issue, we investigated EGs from four glycosyl hydrolase (GH) families (5, 6, 7, and 12) and examined the roles of the three-dimensional structure and catalytic features, with a focus on the presence of a carbohydrate binding module (CBM). Using eucalyptus Kraft wood fibers, we produced cellulose nanofibrils (CNFs) through mild enzymatic pretreatment, followed by disc ultra-refining. Comparing the results with the control (without pretreatment), we observed that GH5 and GH12 enzymes (without CBM) reduced fibrillation energy by approximately 15 %. The most significant energy reduction, 25 and 32 %, was achieved with GH5 and GH6 linked to CBM, respectively. Notably, these CBM-linked EGs improved the rheological properties of CNF suspensions without releasing soluble products. In contrast, GH7-CBM exhibited significant hydrolytic activity, resulting in the release of soluble products, but did not contribute to a reduction in fibrillation energy. This discrepancy can be attributed to the large molecular weight and wide cleft of GH7-CBM, which led to the release of soluble sugars but had little impact on fibrillation. Our findings suggest that the improved fibrillation observed with EG pretreatment is primarily driven by efficient enzyme adsorption on the substrate and modification of the surface viscoelasticity (amorphogenesis), rather than hydrolytic activity or release of products.


Asunto(s)
Celulasa , Celulosa , Humanos , Celulosa/química , Celulasa/química , Adsorción , Hidrólisis , Suspensiones
5.
Carbohydr Polym ; 260: 117814, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33712158

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs), monocopper enzymes that oxidatively cleave recalcitrant polysaccharides, have important biotechnological applications. Thermothelomyces thermophilus is a rich source of biomass-active enzymes, including many members from auxiliary activities family 9 LPMOs. Here, we report biochemical and structural characterization of recombinant TtLPMO9H which oxidizes cellulose at the C1 and C4 positions and shows enhanced activity in light-driven catalysis assays. TtLPMO9H also shows activity against xyloglucan. The addition of TtLPMO9H to endoglucanases from four different glucoside hydrolase families (GH5, GH12, GH45 and GH7) revealed that the product formation was remarkably increased when TtLPMO9H was combined with GH7 endoglucanase. Finally, we determind the first low resolution small-angle X-ray scattering model of the two-domain TtLPMO9H in solution that shows relative positions of its two functional domains and a conformation of the linker peptide, which can be relevant for the catalytic oxidation of cellulose and xyloglucan.


Asunto(s)
Celulasas/metabolismo , Celulosa/metabolismo , Activación Enzimática/efectos de la radiación , Proteínas Fúngicas/metabolismo , Luz , Oxigenasas de Función Mixta/metabolismo , Sordariales/enzimología , Biomasa , Catálisis , Celulosa/química , Proteínas Fúngicas/química , Proteínas Fúngicas/clasificación , Proteínas Fúngicas/genética , Glucanos/química , Glucanos/metabolismo , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/clasificación , Oxigenasas de Función Mixta/genética , Oxidación-Reducción , Filogenia , Dominios Proteicos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Dispersión del Ángulo Pequeño , Estereoisomerismo , Especificidad por Sustrato , Difracción de Rayos X , Xilanos/química , Xilanos/metabolismo
6.
Enzyme Microb Technol ; 144: 109746, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33541573

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) have been introduced into industrial cocktails used for biomass saccharification due to their capacity to boost enzymatic conversion of recalcitrant cellulose. The genome of the thermotolerant ascomycete Aspergillus fumigatus encodes 7 genes for LPMOs that belong to auxiliary activity family 9 (AA9). Here, we cloned, successfully expressed and performed biochemical evaluation of two CBM-less A. fumigatus LPMOs (AfAA9A and AfAA9B). A high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) analysis demonstrated that AfAA9A and AfAA9B are able to oxide cellulose at C1 and C1/C4 positions, respectively. Synergic effects of LPMOs (separately and in combination) with cellulases were investigated. Supplementation of Celluclast 1.5 L with a low concentration of AfAA9B improved in 20 % the saccharification of sugarcane bagasse pretreated by steam explosion (SEB), while AfAA9A did not improvethe saccharification. Analysis of the hydrolyzed biomass by confocal laser scanning microscopy (CLSM) showed the LPMOs are promoting lignin oxidation in the lignocellulosic material. This study complements the available results concerning the utilization of LPMOs in the enzymatic saccharification of lignocellulosic biomass.


Asunto(s)
Saccharum , Aspergillus fumigatus , Celulosa , Lignina
7.
Enzyme Microb Technol ; 120: 23-35, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30396396

RESUMEN

Lignocellulosic materials are abundant, renewable and are emerging as valuable substrates for many industrial applications such as the production of second-generation biofuels, green chemicals and pharmaceuticals. However, the recalcitrance and the complexity of cell wall polysaccharides require multiple enzymes for their complete conversion to oligo- and monosaccharides. The endoglucanases from GH45 family are a small and relatively poorly studied group of enzymes with potential industrial application. The present study reports cloning, heterologous expression and functional characterization of two GH45 endoglucanases from mesophilic fungi Gloeophyllum trabeum (GtGH45) and thermophilic fungi Myceliophthora thermophila (MtGH45), which belong to subfamilies GH45C and GH45A, respectively. Both enzymes have optimal pH 5.0 and melting temperatures (Tm) of 66.0 °C and 80.9 °C, respectively, as estimated from circular dichroism experiments. The recombinant proteins also exhibited different mode of action when incubated with oligosaccharides ranging from cellotriose to cellohexaose, generating mainly cellobiose and cellotriose (MtGH45) or glucose and cellobiose (GtGH45). The MtGH45 did not show activity against oligosaccharides smaller than cellopentaose while the enzyme GtGH45 was able to depolymerize cellotriose, however with lower efficiency when compared to larger oligosaccharides. Furthermore, both GHs45 were stable up to 70 °C for 24 h and useful to enhance initial glucan hydrolysis rates during saccharification of sugarcane pith by a mixture of cellulolytic enzymes. Recombinant GHs45 from diverging subfamilies stand out for differences in substrate specificity appearing as new tools for preparation of enzyme cocktails used in cellulose hydrolysis.


Asunto(s)
Basidiomycota/enzimología , Celulasa/metabolismo , Celulosa/metabolismo , Saccharum/metabolismo , Sordariales/enzimología , Celulasa/química , Celulasa/genética , Simulación del Acoplamiento Molecular , Familia de Multigenes , Filogenia , Especificidad por Sustrato
8.
Biotechnol Rep (Amst) ; 24: e00382, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31799141

RESUMEN

Xylanases decrease the xylan content in pretreated biomass releasing it from hemicellulose, thus improving the accessibility of cellulose for cellulases. In this work, an endo-ß-1,4-xylanase from Aspergillus fumigatus var. niveus (AFUMN-GH10) was successfully expressed. The structural analysis and biochemical characterization showed this AFUMN-GH10 does not contain a carbohydrate-binding module. The enzyme retained its activity in a pH range from 4.5 to 7.0, with an optimal temperature at 60 °C. AFUMN-GH10 showed the highest activity in beechwood xylan. The mode of action of AFUMN-GH10 was investigated by hydrolysis of APTS-labeled xylohexaose, which resulted in xylotriose and xylobiose as the main products. AFUMN-GH10 released 27% of residual xylan from hydrothermally-pretreated corn stover and 14% of residual xylan from hydrothermally-pretreated sugarcane bagasse. The results showed that environmentally friendly pretreatment followed by enzymatic hydrolysis with AFUMN-GH10 in low concentration is a suitable method to remove part of residual and recalcitrant hemicellulose from biomass.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA