Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Strength Cond Res ; 35(Suppl 2): S72-S79, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32398633

RESUMEN

ABSTRACT: Tsoukos, A, Brown, LE, Terzis, G, Veligekas, P, and Bogdanis, GC. Potentiation of bench press throw performance using a heavy load and velocity-based repetition control. J Strength Cond Res 35(2S): S72-S79, 2021-The acute effects of heavy load bench press exercise on subsequent bench press throw (BPT) performance and surface electromyographic (sEMG) activity were examined using movement velocity control. Eleven resistance-trained men completed 3 conditions in randomized and counterbalanced order. In 2 conditions, bench press was performed as fast as possible against a load of 80% of 1 repetition maximum, until mean velocity dropped to 90% (C90) or 70% (C70) of the fastest repetition. In the control condition, no bench press was performed. Single maximal BPT efforts were performed in all conditions after warm-up and throughout the 12 minutes of subsequent recovery. Mean propulsive velocity (MPV), peak velocity (PV), and sEMG activity of the prime mover muscles were measured during the BPT efforts. The total number of repetitions and volume load during bench press were significantly greater in C70 compared with C90 (6.5 ± 1.9 vs. 3.4 ± 0.9 repetitions and 557.8 ± 177.8 vs. 293.8 ± 95.7 kg, p < 0.01). In C90, MPV was increased 5.3-7.4% (p < 0.01) for a prolonged period (4-12 minutes), while in C70, MPV increased only at 10 minutes (+5.9%, p < 0.01) and 12 minutes (+4.3%, p < 0.01). Peak velocity was improved only in the C90 at 8-12th min by 3.6-4.7% (p ≤ 0.05). Surface electromyographic activity of the pectoralis major muscle was significantly greater than baseline at 10 minutes of recovery only in the C90 (p < 0.01). Performance gains may be optimized by taking into account the individual fatigue profiles, allowing a percentage drop of only 10% in movement velocity during the conditioning bench press exercise.


Asunto(s)
Fuerza Muscular , Músculos Pectorales/fisiología , Levantamiento de Peso/fisiología , Adulto , Electromiografía , Fatiga , Humanos , Masculino , Movimiento , Adulto Joven
2.
J Strength Cond Res ; 33(3): 633-640, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28445230

RESUMEN

Bogdanis, GC, Tsoukos, A, Kaloheri, O, Terzis, G, Veligekas, P, and Brown, LE. Comparison between unilateral and bilateral plyometric training on single- and double-leg jumping performance and strength. J Strength Cond Res 33(3): 633-640, 2019-This study compared the effects of unilateral and bilateral plyometric training on single- and double-leg jumping performance, maximal strength, and rate of force development (RFD). Fifteen moderately trained subjects were randomly assigned to either a unilateral (U, n = 7) or bilateral group (B, n = 8). Both groups performed maximal effort plyometric leg exercises 2 times per week for 6 weeks. The B group performed all exercises with both legs, whereas the U group performed half the repetitions with each leg, so that total exercise volume was the same. Jumping performance was assessed by countermovement jumps (CMJs) and drop jumps (DJs), whereas maximal isometric leg press strength and RFD were measured before and after training for each leg separately and both legs together. Countermovement jump improvement with both legs was not significantly different between U (12.1 ± 7.2%) and B (11.0 ± 5.5%) groups. However, the sum of right- and left-leg CMJ only improved in the U group (19.0 ± 7.1%, p < 0.001) and was unchanged in the B group (3.4 ± 8.4%, p = 0.80). Maximal isometric leg press force with both legs was increased similarly between groups (B: 20.1 ± 6.5%, U: 19.9 ± 6.2%). However, the sum of right- and left-leg maximal force increased more in U compared with B group (23.8 ± 9.1% vs. 11.9 ± 6.2%, p = 0.009, respectively). Similarly, the sum of right- and left-leg RFD0-50 and RFD0-100 were improved only in the U group (34-36%, p < 0.01). Unilateral plyometric training was more effective at increasing both single- and double-leg jumping performance, isometric leg press maximal force, and RFD when compared with bilateral training.


Asunto(s)
Movimiento , Fuerza Muscular , Ejercicio Pliométrico/métodos , Adolescente , Adulto , Ejercicio Físico/fisiología , Femenino , Humanos , Contracción Isométrica , Masculino , Levantamiento de Peso , Adulto Joven
3.
J Strength Cond Res ; 33(10): 2760-2767, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29385001

RESUMEN

Tsoukos, A, Drikos, S, Brown, LE, Sotiropoulos, K, Veligekas, P, and Bogdanis, GC. Upper and lower body power are strong predictors for selection of male junior National volleyball team players. J Strength Cond Res 33(10): 2760-2767, 2019-The purpose of this study was to determine whether a battery of anthropometric and lower and upper body strength and speed and power tests predicted selection of young volleyball players for a Junior National Team by expert coaches. Fifty-two male junior volleyball players (14.8 ± 0.5 years, height: 1.84 ± 0.05 m, body mass: 72.5 ± 7.1 kg) took part in a training camp and underwent a selection procedure by expert coaches' of the junior national team. Anthropometric data and fitness tests results were obtained and players were graded on a scale from 0 to 100 on the basis of their performance in a volleyball tournament. Selected players were superior in the majority of measured variables (p ≤ 0.017) and had higher grading scores compared with nonselected players (85.3 ± 4.1 vs. 70.5 ± 5.6, respectively, p < 0.01). The combination of spike jump and reach (SJR) test and 3-kg medicine ball throw (MB3) velocity explained 63.5% of the variance in expert coaches' grading (p < 0.001). A multivariate discriminant analysis yielded a significant discriminant function (Wilk's lambda = 0.55, χ = 29.324, p < 0.001, η = 0.82). Spike jump and reach and MB3 were the only variables that contributed to the discriminant function (standardized function coefficients: SJR = 0.68, MB3 = 0.67). Cross-validation results showed that selection was correctly predicted in 14 of the 16 selected players (predictive accuracy: 87.5%) and in 32 of the 36 nonselected players (predictive accuracy: 88.9%). The SJR and MB3 fitness tests can predict a large portion of the variance of expert coaches' grading and successfully discriminate elite young male volleyball players for selection vs. nonselection for a junior national team. This result is very important as performance testing during a selection process may be reduced to only 2 measurements.


Asunto(s)
Fuerza Muscular , Selección de Personal , Voleibol/fisiología , Adolescente , Antropometría , Rendimiento Atlético , Prueba de Esfuerzo , Humanos , Masculino , Aptitud Física
4.
J Strength Cond Res ; 32(3): 643-650, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28291764

RESUMEN

Tsoukos, A, Veligekas, P, Brown, LE, Terzis, G, and Bogdanis, GC. Delayed effects of a low-volume, power-type resistance exercise session on explosive performance. J Strength Cond Res 32(3): 643-650, 2018-This study examined the delayed effects of a power-type training session on explosive performance. Seventeen well-trained male power and team sport athletes (age: 22.7 ± 5.5 years, height: 181 ± 8 cm, body mass: 80.7 ± 8.6 kg, body fat: 9.2 ± 1.7%, 1 repetition maximum (1RM) half-squat: 163 ± 29 kg) performed 4 sessions (2 experimental and 2 control) 1 week apart in a randomized and counterbalanced order. Explosive performance was assessed before, 24 and 48 hours after a low-volume, power-type training session (5 × 4 jump squats at 40% 1RM with 3 minutes rest), as well as before and after 24 and 48 hours of rest (control). Dependent variables were as follows: countermovement jump (CMJ), reactive strength index (RSI) during a drop jump, leg press maximum isometric force, and rate of force development (RFD) at 3 time windows: 0-100, 0-200, and 0-300 milliseconds. Analysis of variance revealed no changes in the control conditions. In contrast after training, CMJ was improved by 5.1 ± 1.0% and 3.0 ± 1.0% at 24 and 48 hours, respectively, compared with baseline. The RSI improved by 10.7 ± 2.1% only at 24 hours. The RFD increased at all time windows at 24 hours (range of improvement: 9.7 ± 3.4% to 18.3 ± 4.1%, p < 0.01). However, at 48 hours, improvement was only seen in RFD0-100 (9.8 ± 3.1%, p < 0.01). These findings suggest that a low-volume, power-type training session results in delayed enhancement of explosive muscle performance, which is greatest at 24 hours after the activity. Athletes are advised to perform power-type training 1 day before competition or a high-quality training session to improve their performances.


Asunto(s)
Atletas , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología , Entrenamiento de Fuerza/métodos , Adulto , Humanos , Masculino , Descanso/fisiología , Soporte de Peso/fisiología , Adulto Joven
5.
J Sports Sci Med ; 17(3): 348-358, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30116107

RESUMEN

The purpose of the present study was to investigate the effect of a short-term, high-intensity, low-volume Mixed Martial Arts (MMA) specific strength and conditioning training program on performance in national level MMA athletes. Seventeen experienced fighters were divided into two groups: (A) Specific Training Group (STG; n = 10), which followed a specific strength and conditioning program designed according to the demands of MMA competition and (B) Regular Training Group (RTG; n = 7), in which participants followed a regular strength and conditioning program commonly used by MMA athletes. Before and after the four-week training period (3 days per week), body composition, aerobic fitness, strength, power and speed were evaluated. Significant improvements in estimated VO2max, average power during the 2000 m rowing, bench press, back squat and deadlift 1RM, SJ power, CMJ height power, medicine ball throw velocity, 10 m sprint and 2 m take down speed and fat-free mass were found only in the STG (3.7 to 22.2%; p < 0.05; Hedge's g = -0.42 - 4.1). No significant changes were found for the RTG (p = 0.225 to 0.811). Significant differences between the groups were found for almost all post-training assessments (p < 0.05; Hedge's g = 0.25 - 1.45) as well as for the percentage changes from pre to post training (p < 0.05; Hedge's g: 0.25 - 1.45). Significant relationships were found between percentage changes in fat-free mass, endurance capacity, muscle strength/power and speed (r: -0.475 to 0.758; p < 0.05). These results suggest that a high-intensity low-volume strength and conditioning training intervention designed according to the demands of MMA competition may result in significant performance improvements for well-trained fighters.


Asunto(s)
Rendimiento Atlético/fisiología , Entrenamiento de Intervalos de Alta Intensidad , Fuerza Muscular , Aptitud Física , Entrenamiento de Fuerza , Adulto , Atletas , Humanos , Masculino , Artes Marciales , Adulto Joven
6.
J Strength Cond Res ; 30(8): 2250-7, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26808841

RESUMEN

Tsoukos, A, Bogdanis, GC, Terzis, G, and Veligekas, P. Acute improvement of vertical jump performance after isometric squats depends on knee angle and vertical jumping ability. J Strength Cond Res 30(8): 2250-2257, 2016-This study examined the acute effects of maximum isometric squats at 2 different knee angles (90 or 140°) on countermovement jump (CMJ) performance in power athletes. Fourteen national-level male track and field power athletes completed 3 main trials (2 experimental and 1 control) in a randomized and counterbalanced order 1 week apart. Countermovement jump performance was evaluated using a force-plate before and 15 seconds, 3, 6, 9, and 12 minutes after 3 sets of 3 seconds maximum isometric contractions with 1-minute rest in between, from a squat position with knee angle set at 90 or 140°. Countermovement jump performance was improved compared with baseline only in the 140° condition by 3.8 ± 1.2% on the 12th minute of recovery (p = 0.027), whereas there was no change in CMJ height in the 90° condition. In the control condition, there was a decrease in CMJ performance over time, reaching -3.6 ± 1.2% (p = 0.049) after 12 minutes of recovery. To determine the possible effects of baseline jump performance on subsequent CMJ performance, subjects were divided into 2 groups ("high jumpers" and "low jumpers"). The baseline CMJ values of "high jumpers" and "low jumpers" differed significantly (CMJ: 45.1 ± 2.2 vs. 37.1 ± 3.9 cm, respectively, p = 0.001). Countermovement jump was increased only in the "high jumpers" group by 5.4 ± 1.4% (p = 0.001) and 7.4 ± 1.2% (p = 0.001) at the knee angles of 90 and 140°, respectively. This improvement was larger at the 140° angle (p = 0.049). Knee angle during isometric squats and vertical jumping ability are important determinants of the acute CMJ performance increase observed after a conditioning activity.


Asunto(s)
Rendimiento Atlético/fisiología , Ejercicio Físico/fisiología , Contracción Isométrica/fisiología , Articulación de la Rodilla/fisiología , Adulto , Atletas , Humanos , Masculino , Fatiga Muscular/fisiología , Atletismo/fisiología , Adulto Joven
7.
J Strength Cond Res ; 28(9): 2521-8, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24584048

RESUMEN

This study investigated the effects of muscle action type during conditioning activity (half-squat) on subsequent vertical jump performance. Fourteen track and field athletes (relative half-squat of 2.3 ± 0.3 times their body weight) completed 4 main trials in a randomized and counterbalanced order 5-7 days apart: (a) concentric (CON) half-squats: 7.5 ± 1.2 repetitions against 90% of 1 repetition maximum (1RM), (b) eccentric (ECC) half-squats: 9.3 ± 1.5 repetitions against 70% of 1RM, and (c) 3 sets of 3-second maximal isometric (ISO) half-squats, (d) a control (CTRL) trial, where subjects rested for 10 minutes. The number of repetitions in CON and ECC was adjusted so that the impulse of the vertical ground reaction force was similar to ISO. Countermovement vertical jump (CMJ) performance was evaluated for 21 minutes after each main trial. Countermovement vertical jump performance in ISO was higher than CTRL from the second to the 10th minute of recovery, whereas CMJ performance in ECC was higher than CTRL from the sixth and 10th minute of recovery. Analysis of the peak individual responses revealed an increase in CMJ performance compared with baseline only in ISO (3.0 ± 1.2%; p = 0.045), whereas no significant increases were observed in ECC and CON. Peak CMJ performance for all subjects in ISO and ECC was achieved within 2-10 minutes after the conditioning muscle actions. Isometric were more effective than CON and ECC muscle actions in increasing explosive leg performance when the impulse of the ground reaction force of the conditioning exercise was equated.


Asunto(s)
Rendimiento Atlético/fisiología , Ejercicio Físico/fisiología , Músculo Esquelético/fisiología , Acondicionamiento Físico Humano/métodos , Acondicionamiento Físico Humano/fisiología , Adulto , Humanos , Pierna , Masculino , Fuerza Muscular , Factores de Tiempo , Atletismo/fisiología , Adulto Joven
8.
J Hum Kinet ; 68: 81-98, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31531135

RESUMEN

This study examined the acute effects of the bench press exercise with low and moderate loads as well as with two predetermined movement velocity loss percentages on bench press throw performance and surface electromyographic (sEMG) activity. Ten trained men completed 5 main trials in randomized and counterbalanced order one week apart. Mean propulsive velocity (MPV), peak velocity (PV) and sEMG activity of prime movers were evaluated before and periodically for 12 minutes of recovery under five conditions: using loads of 40 or 60% of 1 RM, until mean velocity dropped to 90 or 70%, as well as a control condition (CTRL). MPV and PV were increased 4-12 min into recovery by 4.5-6.8% only after the 60%1RM condition during which velocity dropped to 90% and total exercise volume was the lowest of all conditions (p < 0.01, Hedges' g = 0.8-1.7). When peak individual responses were calculated irrespective of time, MPV was increased by 9.2 ± 4.4 (p < 0.001, Hedges' g = 1.0) and 6.1 ± 3.6% (p < 0.001, Hedges' g = 0.7) under the two conditions with the lowest total exercise volume irrespective of the load, i.e. under the conditions of 40 and 60% 1RM where velocity was allowed to drop to 90%. sEMG activity of the triceps was significantly greater when peak individual responses were taken into account only under the 60%1RM condition when velocity dropped to 90% (p < 0.05, Hedges' g = 0.4). This study showed that potentiation may be maximized by taking into account individual fatigue profiles using velocity-based training.

9.
J Hum Kinet ; 67: 163-173, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31523315

RESUMEN

This study examined whether anthropometric and fitness tests might successfully predict selection of young female volleyball players for a junior national team. Sixty four female players (age: 14.4 ± 0.5 y, body height: 1.76 ± 0.05 m, body mass: 63.9 ± 6.4 kg) underwent a selection procedure for the junior national team. Anthropometric data and speed and power test results were obtained and players were graded for their performance in a volleyball tournament. Selected players differed from the non-qualified in body height (3.4%; p = 0.001), standing reach height (2.6%; p = 0.001), the sum of skinfolds (15.4%; p = 0.035), body mass index (BMI; 7.1%; p = 0.005) and spike jump and reach (SJR) (2.5%; p = 0.001). Selected players were classified in the 99.2 ± 1.6 percentile in body height and in the 51.4 ± 20.6 percentile in the BMI, which were significantly different from those of the non-qualified players (95.4 ± 7.0 and 66.7 ± 18.6, p = 0.02 and p = 0.004, respectively). Stepwise discriminant analysis yielded a discriminant function (p < 0.001, η2 = 0.78) that was highly loaded by height, SJR and the BMI (r = 0.79, r = 0.74 and r = -0.53, respectively). Cross validation results showed that selection was correctly predicted in 15 out of the 20 selected players (predictive accuracy: 75.0%) and in 35 out of the 44 non-qualified players (predictive accuracy: 79.5%). In conclusion, body height, the BMI and SJR height successfully discriminated between selected and non-qualified elite young female junior national team volleyball players. The equal vertical jump, sprint and agility of selected and non-qualified players, highlight the importance of body height and the BMI for selection of elite junior female volleyball players.

10.
Eur J Sport Sci ; 19(3): 345-353, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30114973

RESUMEN

This study compared knee angle-specific neuromuscular adaptations after two low-volume isometric leg press complex training programmes performed at different muscle lengths. Fifteen young males were divided into two groups and trained three times per week for 6 weeks. One group (n = 8) performed 5-7 sets of 3 s maximum isometric leg press exercise, with 4 min recovery, with knee angle at 85° ± 2° (longer muscle-tendon unit length; L-MTU). The other group (n = 7) performed the same isometric training at a knee angle of 145° ± 2° (180° = full extension; shorter muscle-tendon unit length; S-MTU). During the recovery after each set of isometric exercise, participants performed two CMJ every minute, as a form of complex training. Maximum isometric force (MIF) and rate of force development (RFD) were measured over a wide range of knee angles. Countermovement jump (CMJ) performance and maximum half-squat strength (1RM) were also assessed. Training at S-MTU induced a large increase of MIF (22-58%, p < 0.02) and RFD (18-43%, p < 0.05 to 0.001) at knee angles close to the training angle and resulted in a 14° ± 9° shift of the force vs. knee joint angle relationship towards extended knee joint angles (p = 0.001). In contrast, training at L-MTU, resulted in a moderate and similar (≈12.3%, p = 0.028) improvement of force at all knee angles. CMJ performance and 1RM were equally increased in both groups after training by 10.4% ± 8.3% and 7.8% ± 4.7% (p < 0.001), respectively. Low-volume maximal isometric leg-press complex training at S-MTU causes angle-specific adaptations in isometric strength and RFD, while dynamic muscle performance is independent of muscle length during training.


Asunto(s)
Rodilla/fisiología , Fuerza Muscular , Músculo Esquelético/fisiología , Entrenamiento de Fuerza/métodos , Tendones/fisiología , Adaptación Fisiológica , Humanos , Contracción Isométrica , Masculino , Ejercicio Pliométrico , Adulto Joven
11.
Med Sci Sports Exerc ; 50(4): 729-738, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29206782

RESUMEN

INTRODUCTION: The purpose of this study was to examine the effects of a short-term fast eccentric and ballistic complex training program on muscle power, rate of force development (RFD), muscle fiber composition, and cross-sectional area (CSA). METHODS: Sixteen male physical education students were randomly assigned to either a training group (TG, n = 8) or a control group (n = 8). The TG followed a 6-wk low volume training program, including fast eccentric squat training with an individually optimized load of 74% ± 7% of maximal half-squat strength (1RM) twice per week and a ballistic training session with loaded (30% 1RM) and unloaded jump squats, once per week, all combined with unloaded plyometric jumps. RESULTS: Half squat 1RM was increased in the TG from 1.87 ± 0.28 to 2.14 ± 0.31 kg per kilogram body mass (14.4% ± 9.3%, P = 0.01). The percentage of types I, IIA, and IIX fibers were similar in the two groups at pretesting and did not change after the intervention period (P = 0.53-0.89). Muscle fiber CSA increased in all fiber types by 8.3% to 11.6% (P = 0.02 to 0.001) in TG only. Countermovement jump height and peak power measured at five different external loads (0%-65% of 1RM) only increased in the TG by approximately 20% to 36% (P < 0.01) and approximately 16% to 22% (P < 0.01), respectively. Peak ground reaction force during jump squats remained unchanged in both groups, whereas RFD increased in the TG only (40%-107%, P = 0.001). CONCLUSIONS: A combination of low-volume fast eccentric and ballistic jump squat training with plyometric jumps in a strength-power potentiation complex format, induced substantial increases in peak leg muscle power, RFD, and maximal strength, accompanied by gains in CSA of all muscle fiber types, without a reduction in fast twitch fiber composition.


Asunto(s)
Fibras Musculares Esqueléticas/fisiología , Fuerza Muscular , Entrenamiento de Fuerza/métodos , Antropometría , Humanos , Masculino , Ejercicio Pliométrico , Adulto Joven
12.
Int J Sports Physiol Perform ; 12(2): 235-240, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27249821

RESUMEN

PURPOSE: To examine the acute effects of a conditioning plyometric exercise on long-jump performance during a simulated long-jump competition. METHODS: Eight national-level track and field decathletes performed 6 long-jump attempts with a full approach run separated by 10-min recoveries. In the experimental condition subjects performed 3 rebound vertical jumps with maximal effort 3 min before the last 5 attempts, while the 1st attempt served as baseline. In the control condition the participants performed 6 long jumps without executing the conditioning exercise. RESULTS: Compared with baseline, long-jump performance progressively increased only in the experimental condition, from 3.0%, or 17.5 cm, in the 3rd attempt (P = .046, d = 0.56), to 4.8%, or 28.2 cm, in the 6th attempt (P = .0001, d = 0.84). The improvement in long-jump performance was due to a gradual increase in vertical takeoff velocity from the 3rd (by 8.7%, P = .0001, d = 1.82) to the 6th jump (by 17.7%, P = .0001, d = 4.38). Horizontal-approach velocity, takeoff duration, and horizontal velocity at takeoff were similar at all long-jump attempts in both conditions (P = .80, P = .36, and P = .15, respectively). CONCLUSIONS: Long-jump performance progressively improved during a simulated competition when a plyometric conditioning exercise was executed 3 min before each attempt. This improvement was due to a progressive increase in vertical velocity of takeoff, while there was no effect on the horizontal velocity.


Asunto(s)
Rendimiento Atlético/fisiología , Acondicionamiento Físico Humano/métodos , Ejercicio Pliométrico , Atletismo/fisiología , Ejercicio de Calentamiento/fisiología , Adulto , Fenómenos Biomecánicos , Conducta Competitiva/fisiología , Humanos , Masculino , Músculo Esquelético/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA