Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
BMC Biol ; 22(1): 51, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414014

RESUMEN

BACKGROUND: Lymphangiogenesis, the formation of lymphatic vessels, is tightly linked to the development of the venous vasculature, both at the cellular and molecular levels. Here, we identify a novel role for Sorbs1, the founding member of the SoHo family of cytoskeleton adaptor proteins, in vascular and lymphatic development in the zebrafish. RESULTS: We show that Sorbs1 is required for secondary sprouting and emergence of several vascular structures specifically derived from the axial vein. Most notably, formation of the precursor parachordal lymphatic structures is affected in sorbs1 mutant embryos, severely impacting the establishment of the trunk lymphatic vessel network. Interestingly, we show that Sorbs1 interacts with the BMP pathway and could function outside of Vegfc signaling. Mechanistically, Sorbs1 controls FAK/Src signaling and subsequently impacts on the cytoskeleton processes regulated by Rac1 and RhoA GTPases. Inactivation of Sorbs1 altered cell-extracellular matrix (ECM) contacts rearrangement and cytoskeleton dynamics, leading to specific defects in endothelial cell migratory and adhesive properties. CONCLUSIONS: Overall, using in vitro and in vivo assays, we identify Sorbs1 as an important regulator of venous and lymphatic angiogenesis independently of the Vegfc signaling axis. These results provide a better understanding of the complexity found within context-specific vascular and lymphatic development.


Asunto(s)
Vasos Linfáticos , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Vasos Linfáticos/metabolismo , Linfangiogénesis/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Citoesqueleto/metabolismo
2.
Blood ; 140(17): 1891-1906, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-35544598

RESUMEN

Relapse and refractory T-cell acute lymphoblastic leukemia (T-ALL) has a poor prognosis, and new combination therapies are sorely needed. Here, we used an ex vivo high-throughput screening platform to identify drug combinations that kill zebrafish T-ALL and then validated top drug combinations for preclinical efficacy in human disease. This work uncovered potent drug synergies between AKT/mTORC1 (mammalian target of rapamycin complex 1) inhibitors and the general tyrosine kinase inhibitor dasatinib. Importantly, these same drug combinations effectively killed a subset of relapse and dexamethasone-resistant zebrafish T-ALL. Clinical trials are currently underway using the combination of mTORC1 inhibitor temsirolimus and dasatinib in other pediatric cancer indications, leading us to prioritize this therapy for preclinical testing. This combination effectively curbed T-ALL growth in human cell lines and primary human T-ALL and was well tolerated and effective in suppressing leukemia growth in patient-derived xenografts (PDX) grown in mice. Mechanistically, dasatinib inhibited phosphorylation and activation of the lymphocyte-specific protein tyrosine kinase (LCK) to blunt the T-cell receptor (TCR) signaling pathway, and when complexed with mTORC1 inhibition, induced potent T-ALL cell killing through reducing MCL-1 protein expression. In total, our work uncovered unexpected roles for the LCK kinase and its regulation of downstream TCR signaling in suppressing apoptosis and driving continued leukemia growth. Analysis of a wide array of primary human T-ALLs and PDXs grown in mice suggest that combination of temsirolimus and dasatinib treatment will be efficacious for a large fraction of human T-ALLs.


Asunto(s)
Proteína Tirosina Quinasa p56(lck) Específica de Linfocito , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Niño , Humanos , Ratones , Animales , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Dasatinib/farmacología , Dasatinib/uso terapéutico , Pez Cebra/metabolismo , Tirosina , Línea Celular Tumoral , Transducción de Señal , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Receptores de Antígenos de Linfocitos T/uso terapéutico , Linfocitos T/metabolismo , Recurrencia , Mamíferos/metabolismo
3.
Haematologica ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38058200

RESUMEN

CASZ1 is a conserved transcription factor involved in neural development, blood vessel assembly and heart morphogenesis. CASZ1 has been implicated in cancer, either suppressing or promoting tumor development depending on the tissue. However, the impact of CASZ1 on hematological tumors remains unknown. Here, we show that the T-cell oncogenic transcription factor TAL1 is a direct positive regulator of CASZ1, that T-cell acute lymphoblastic leukemia (T-ALL) samples at diagnosis overexpress CASZ1b isoform, and that CASZ1b expression in patient samples correlates with PI3KAKT- mTOR signaling pathway activation. In agreement, overexpression of CASZ1b in both Ba/F3 and T-ALL cells leads to the activation of PI3K signaling pathway, which is required for CASZ1b-mediated transformation of Ba/F3 cells in vitro and malignant expansion in vivo. We further demonstrate that CASZ1b cooperates with activated NOTCH1 to promote T-ALL development in zebrafish, and that CASZ1b protects human T-ALL cells from serum deprivation and treatment with chemotherapeutic drugs. Taken together, our studies indicate that CASZ1b is a TAL1-regulated gene that promotes T-ALL development and resistance to chemotherapy.

5.
Leukemia ; 36(6): 1533-1540, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35581375

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive pediatric cancer. Amongst the wide array of driver mutations, 10% of T-ALL patients display gain-of-function mutations in the IL-7 receptor α chain (IL-7Rα, encoded by IL7R), which occur in different molecular subtypes of this disease. However, it is still unclear whether IL-7R mutational activation is sufficient to transform T-cell precursors. Also, which genes cooperate with IL7R to drive leukemogenesis remain poorly defined. Here, we demonstrate that mutant IL7R alone is capable of inducing T-ALL with long-latency in stable transgenic zebrafish and transformation is associated with MYC transcriptional activation. Additionally, we find that mutant IL7R collaborates with Myc to induce early onset T-ALL in transgenic zebrafish, supporting a model where these pathways collaborate to drive leukemogenesis. T-ALLs co-expressing mutant IL7R and Myc activate STAT5 and AKT pathways, harbor reduced numbers of apoptotic cells and remake tumors in transplanted zebrafish faster than T-ALLs expressing Myc alone. Moreover, limiting-dilution cell transplantation experiments reveal that activated IL-7R signaling increases the overall frequency of leukemia propagating cells. Our work highlights a synergy between mutant IL7R and Myc in inducing T-ALL and demonstrates that mutant IL7R enriches for leukemia propagating potential.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animales , Animales Modificados Genéticamente , Carcinogénesis/metabolismo , Niño , Humanos , Subunidad alfa del Receptor de Interleucina-7/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Receptores de Interleucina-7/genética , Receptores de Interleucina-7/metabolismo , Transducción de Señal/genética , Linfocitos T/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
6.
J Exp Med ; 218(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34415995

RESUMEN

T cell immunotherapies have revolutionized treatment for a subset of cancers. Yet, a major hurdle has been the lack of facile and predicative preclinical animal models that permit dynamic visualization of T cell immune responses at single-cell resolution in vivo. Here, optically clear immunocompromised zebrafish were engrafted with fluorescent-labeled human cancers along with chimeric antigen receptor T (CAR T) cells, bispecific T cell engagers (BiTEs), and antibody peptide epitope conjugates (APECs), allowing real-time single-cell visualization of T cell-based immunotherapies in vivo. This work uncovered important differences in the kinetics of T cell infiltration, tumor cell engagement, and killing between these immunotherapies and established early endpoint analysis to predict therapy responses. We also established EGFR-targeted immunotherapies as a powerful approach to kill rhabdomyosarcoma muscle cancers, providing strong preclinical rationale for assessing a wider array of T cell immunotherapies in this disease.


Asunto(s)
Inmunoterapia/métodos , Rabdomiosarcoma/terapia , Análisis de la Célula Individual/métodos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Pez Cebra/genética , Adolescente , Adulto , Animales , Animales Modificados Genéticamente , Niño , Preescolar , Proteínas de Unión al ADN/genética , Receptores ErbB/inmunología , Femenino , Humanos , Inmunoterapia Adoptiva , Subunidad gamma Común de Receptores de Interleucina/genética , Masculino , Ratones Endogámicos , Ftalazinas/farmacología , Piperazinas/farmacología , Rabdomiosarcoma/patología , Linfocitos T/inmunología , Temozolomida/farmacología , Células Tumorales Cultivadas , Proteínas de Pez Cebra/genética
7.
Cell Death Dis ; 10(7): 512, 2019 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-31273193

RESUMEN

Muscle formation is controlled by a number of key myogenic transcriptional regulators that govern stage-specific gene expression programs and act as terminal effectors of intracellular signaling pathways. To date, the role of phosphatases in the signaling cascades instructing muscle development remains poorly understood. Here, we show that a specific PP2A-B55δ holoenzyme is necessary for skeletal myogenesis. The primary role of PP2A-B55δ is to dephosphorylate histone deacetylase 4 (HDAC4) following myocyte differentiation and ensure repression of Myocyte enhancer factor 2D (MEF2D)-dependent gene expression programs during myogenic fusion. As a crucial HDAC4/MEF2D target gene that governs myocyte fusion, we identify ArgBP2, an upstream inhibitor of Abl, which itself is a repressor of CrkII signaling. Consequently, cells lacking PP2A-B55δ show upregulation of ArgBP2 and hyperactivation of CrkII downstream effectors, including Rac1 and FAK, precluding cytoskeletal and membrane rearrangements associated with myoblast fusion. Both in vitro and in zebrafish, loss-of-function of PP2A-B55δ severely impairs fusion of myocytes and formation of multinucleated muscle fibers, without affecting myoblast differentiation. Taken together, our results establish PP2A-B55δ as the first protein phosphatase to be involved in myoblast fusion and suggest that reversible phosphorylation of HDAC4 may coordinate differentiation and fusion events during myogenesis.


Asunto(s)
Histona Desacetilasas/metabolismo , Factores de Transcripción MEF2/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Animales , Fusión Celular , Línea Celular , Citoesqueleto/metabolismo , Embrión no Mamífero/metabolismo , Holoenzimas/metabolismo , Ratones , Morfogénesis , Desarrollo de Músculos , Fibras Musculares Esqueléticas/citología , Fenotipo , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Transcripción Genética , Pez Cebra/embriología , Proteína de Unión al GTP rac1/metabolismo
8.
Elife ; 72018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29547120

RESUMEN

Microtubules control different aspects of cell polarization. In cells with a radial microtubule system, a pivotal role in setting up asymmetry is attributed to the relative positioning of the centrosome and the nucleus. Here, we show that centrosome loss had no effect on the ability of endothelial cells to polarize and move in 2D and 3D environments. In contrast, non-centrosomal microtubules stabilized by the microtubule minus-end-binding protein CAMSAP2 were required for directional migration on 2D substrates and for the establishment of polarized cell morphology in soft 3D matrices. CAMSAP2 was also important for persistent endothelial cell sprouting during in vivo zebrafish vessel development. In the absence of CAMSAP2, cell polarization in 3D could be partly rescued by centrosome depletion, indicating that in these conditions the centrosome inhibited cell polarity. We propose that CAMSAP2-protected non-centrosomal microtubules are needed for establishing cell asymmetry by enabling microtubule enrichment in a single-cell protrusion.


Asunto(s)
Polaridad Celular/fisiología , Células Endoteliales/fisiología , Microtúbulos/metabolismo , Neovascularización Fisiológica/fisiología , Animales , Animales Modificados Genéticamente , Movimiento Celular/fisiología , Células Cultivadas , Centrosoma/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Aparato de Golgi/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Interferencia de ARN , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA