Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(36): 16350-16365, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36040461

RESUMEN

All-solid-state batteries based on non-combustible solid electrolytes are promising candidates for safe energy storage systems. In addition, they offer the opportunity to utilize metallic lithium as an anode. However, it has proven to be a challenge to design an electrolyte that combines high ionic conductivity and processability with thermodynamic stability toward lithium. Herein, we report a new highly conducting solid solution that offers a route to overcome these challenges. The Li-P-S ternary was first explored via a combination of high-throughput crystal structure predictions and solid-state synthesis (via ball milling) of the most promising compositions, specifically, phases within the Li3P-Li2S tie line. We systematically characterized the structural properties and Li-ion mobility of the resulting materials by X-ray and neutron diffraction, solid-state nuclear magnetic resonance spectroscopy (relaxometry), and electrochemical impedance spectroscopy. A Li3P-Li2S metastable solid solution was identified, with the phases adopting the fluorite (Li2S) structure with P substituting for S and the extra Li+ ions occupying the octahedral voids and contributing to the ionic transport. The analysis of the experimental data is supported by extensive quantum-chemical calculations of both structural stability, diffusivity, and activation barriers for Li+ transport. The new solid electrolytes show Li-ion conductivities in the range of established materials, while their composition guarantees thermodynamic stability toward lithium metal anodes.

2.
Chem Mater ; 35(22): 9632-9646, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38047184

RESUMEN

The high Li-ion conductivity and wide electrochemical stability of Li-rich garnets (Li7La3Zr2O12) make them one of the leading solid electrolyte candidates for solid-state batteries. Dopants such as Al and Ga are typically used to enable stabilization of the high Li+ ion-conductive cubic phase at room temperature. Although numerous studies exist that have characterized the electrochemical properties, structure, and lithium diffusion in Al- and Ga-LLZO, the local structure and site occupancy of dopants in these compounds are not well understood. Two broad 27Al or 69,71Ga resonances are often observed with chemical shifts consistent with tetrahedrally coordinated Al/Ga in the magic angle spinning nuclear magnetic resonance (MAS NMR) spectra of both Al- and Ga-LLZO, which have been assigned to either Al and/or Ga occupying 24d and 96h/48g sites in the LLZO lattice or the different Al/Ga configurations that arise from different arrangements of Li around these dopants. In this work, we unambiguously show that the side products γ-LiAlO2 and LiGaO2 lead to the high frequency resonances observed by NMR spectroscopy and that both Al and Ga only occupy the 24d site in the LLZO lattice. Furthermore, it was observed that the excess Li often used during synthesis leads to the formation of these side products by consuming the Al/Ga dopants. In addition, the consumption of Al/Ga dopants leads to the tetragonal phase formation commonly observed in the literature, even after careful mixing of precursors. The side-products can exist even after sintering, thereby controlling the Al/Ga content in the LLZO lattice and substantially influencing the lithium-ion conductivity in LLZO, as measured here by electrochemical impedance spectroscopy.

3.
ACS Energy Lett ; 8(8): 3476-3484, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37588018

RESUMEN

Garnet solid-electrolyte-based Li-metal batteries can be used in energy storage devices with high energy densities and thermal stability. However, the tendency of garnets to form lithium hydroxide and carbonate on the surface in an ambient atmosphere poses significant processing challenges. In this work, the decomposition of surface layers under various gas environments is studied by using two surface-sensitive techniques, near-ambient-pressure X-ray photoelectron spectroscopy and grazing incidence X-ray diffraction. It is found that heating to 500 °C under an oxygen atmosphere (of 1 mbar and above) leads to a clean garnet surface, whereas low oxygen partial pressures (i.e., in argon or vacuum) lead to additional graphitic carbon deposits. The clean surface of garnets reacts directly with moisture and carbon dioxide below 400 and 500 °C, respectively. This suggests that additional CO2 concentration controls are needed for the handling of garnets. By heating under O2 along with avoiding H2O and CO2, symmetric cells with less than 10 Ωcm2 interface resistance are prepared without the use of any interlayers; plating currents of >1 mA cm-2 without dendrite initiation are demonstrated.

4.
Nat Commun ; 13(1): 6701, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36335119

RESUMEN

Extensive attention has focused on the structure optimization of perovskites, whereas rare research has mapped the structure heterogeneity within mixed hybrid perovskite films. Overlooked aspects include material and structure variations as a function of depth. These depth-dependent local structure heterogeneities dictate their long-term stabilities and efficiencies. Here, we use a nano-focused wide-angle X-ray scattering method for the mapping of film heterogeneities over several micrometers across lateral and vertical directions. The relative variations of characteristic perovskite peak positions show that the top film region bears the tensile strain. Through a texture orientation map of the perovskite (100) peak, we find that the perovskite grains deposited by sequential spray-coating grow along the vertical direction. Moreover, we investigate the moisture-induced degradation products in the perovskite film, and the underlying mechanism for its structure-dependent degradation. The moisture degradation along the lateral direction primarily initiates at the perovskite-air interface and grain boundaries. The tensile strain on the top surface has a profound influence on the moisture degradation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA