RESUMEN
The active enantiomer R-Praziquantel (PZQ) shows a clinically lower relative exposure when administered enantiomerically pure compared with a racemic form. We investigated the hypothesis that enantiomer-enantiomer interactions on cytochrome P450 (P450) enzymes could explain this observation and aimed to further deepen the understanding of PZQ metabolism. First, in an in vitro metabolite profiling study, the formation of multiple metabolites per P450, together with an observed interconversion of cis-4'-OH-PZQ to trans-4'-OH-PZQ in human hepatocytes, pointed out the inadequacy of measuring metabolite formation in kinetic studies. Thus, a substrate depletion approach to study PZQ enantiomeric interactions was applied. Second, an abundant CYP3A4 metabolite found in previous studies was structurally characterized. Third, substrate depletion methodologies were applied to determine P450 enzyme kinetics of PZQ and to further estimate enantiomer-enantiomer inhibitory parameters. A competitive inhibition between PZQ enantiomers for CYP2C9, 2C19, 3A4, and 3A5 was revealed. Analyses considering the clearance of only one or both enantiomers provided comparable enantiomer-enantiomer inhibition estimates. To conclude, this paper provides new insights into PZQ metabolic profile to enable a better understanding of enantioselective pharmacokinetics using substrate depletion-based methods. SIGNIFICANCE STATEMENT: In this study, enantiomer-enantiomer interactions of praziquantel on cytochrome P450 metabolizing enzymes are investigated via substrate depletion measurement using modeling methods. Together with new insights into the praziquantel metabolism, this work provides a novel data set to understand its pharmacokinetics.
Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Interacciones Farmacológicas , Praziquantel/farmacocinética , Línea Celular , Química Farmacéutica/métodos , Pruebas de Enzimas , Hepatocitos , Humanos , Cinética , Metabolómica , Microsomas Hepáticos/enzimología , Oxidación-Reducción , Praziquantel/química , Proteínas Recombinantes/metabolismo , EstereoisomerismoRESUMEN
We describe the synthesis of a library of 11, 638 N-alkylglycine peptoid trimers in a positional scanning format with adjustment of reaction conditions to account for different reactivities of the monomer building blocks. Evaluation of the library by high-content phenotypic screening for modulators of the cytoskeleton and mitosis resulted in the identification of two apoptosis-inducing peptoids, which, despite their structural similarity, target different proteins and cellular mechanisms. Whereas one peptoid binds to karyopherins, which mediate nuclear transport, the other N-alkylglycine trimer binds tubulin at the vinca alkaloid binding site.
Asunto(s)
Apoptosis/efectos de los fármacos , Carioferinas/metabolismo , Biblioteca de Péptidos , Peptoides/síntesis química , Peptoides/farmacología , Tubulina (Proteína)/metabolismo , Proliferación Celular/efectos de los fármacos , Células HeLa , Humanos , Mitosis/efectos de los fármacos , Peptoides/química , Polimerizacion , Relación Estructura-ActividadRESUMEN
Small-molecule chemotypes with unexpected bioactivity may be identified by combining strategies built on the biological relevance of, e.g., natural products (NPs), such as biology-oriented synthesis, with principles that enable efficient coverage of chemical space, such as fragment-based compound design. Evaluation in target-agnostic phenotypic assays and target identification may link biologically relevant chemotypes to unexpected and unknown targets. We describe the phenotypic identification of an unprecedented kinase inhibitor chemotype obtained by synthetic combination of two biosynthetically unrelated NP fragment types. Target identification and biological characterization revealed that the inhibitor, termed Myokinasib, impairs cytokinesis, induces formation of multinucleated cells, and reduces phosphorylated myosin II light chain abundance on stress fibers by selective inhibition of myosin light chain kinase 1.
Asunto(s)
Productos Biológicos/química , Productos Biológicos/farmacología , Quinasa de Cadena Ligera de Miosina/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Animales , Línea Celular , Citocinesis/efectos de los fármacos , Humanos , Ratones , Cadenas Ligeras de Miosina/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Fosforilación/efectos de los fármacosRESUMEN
The development of neuroprotective therapies is a sought-after goal. By screening combinatorial chemical libraries using in vitro assays, we identified the small molecule BN201 that promotes the survival of cultured neural cells when subjected to oxidative stress or when deprived of trophic factors. Moreover, BN201 promotes neuronal differentiation, the differentiation of precursor cells to mature oligodendrocytes in vitro, and the myelination of new axons. BN201 modulates several kinases participating in the insulin growth factor 1 pathway including serum-glucocorticoid kinase and midkine, inducing the phosphorylation of NDRG1 and the translocation of the transcription factor Foxo3 to the cytoplasm. In vivo, BN201 prevents axonal and neuronal loss, and it promotes remyelination in models of multiple sclerosis, chemically induced demyelination, and glaucoma. In summary, we provide a new promising strategy to promote neuroaxonal survival and remyelination, potentially preventing disability in brain diseases.
Asunto(s)
Amidas/uso terapéutico , Axones/efectos de los fármacos , Encefalitis/tratamiento farmacológico , Vaina de Mielina/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Peptoides/uso terapéutico , Pirrolidinonas/uso terapéutico , Animales , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Femenino , Técnica del Anticuerpo Fluorescente , Glaucoma/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Nervio Óptico/efectos de los fármacos , Proguanil , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , TriazinasRESUMEN
Currently, cell-based screenings yield a multitude of small molecule modulators of diverse biological processes. The most demanding step in the course of elucidation of the mode of action of biologically active compounds is the identification of the target proteins. Although there is no generic approach available, affinity-based chemical proteomics is the most widely applied methodology. Particularly, quantitative chemical proteomics has proven very powerful in the identification of the putative targets of small molecules. Here we describe the procedure for identification of target proteins for small molecules employing affinity chromatography and the stable isotope labeling in cell culture (SILAC) for quantitative proteomics.