Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 125(20): 207203, 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33258661

RESUMEN

We present a combined numerical, theoretical, and experimental study on stimulated three-magnon splitting in a magnetic disk in the vortex state. Our micromagnetic simulations and Brillouin-light-scattering results confirm that three-magnon splitting can be triggered even below threshold by exciting one of the secondary modes by magnons propagating in a waveguide next to the disk. The experiments show that stimulation is possible over an extended range of excitation powers and a wide range of frequencies around the eigenfrequencies of the secondary modes. Rate-equation calculations predict an instantaneous response to stimulation and the possibility to prematurely trigger three-magnon splitting even above threshold in a sustainable manner. These predictions are confirmed experimentally using time-resolved Brillouin-light-scattering measurements and are in a good qualitative agreement with the theoretical results. We believe that the controllable mechanism of stimulated three-magnon splitting could provide a possibility to utilize magnon-based nonlinear networks as hardware for neuromorphic computing.

2.
Phys Rev Lett ; 122(19): 197201, 2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-31144927

RESUMEN

The existence of backscattering-immune spin-wave modes is demonstrated in magnetic thin films of nanoscale thickness. Our results reveal that chiral magnetostatic surface waves (CMSSWs), which propagate perpendicular to the magnetization direction in an in-plane magnetized thin film, are robust against backscattering from surface defects. CMSSWs are protected against various types of surface inhomogeneities and defects as long as their frequency lies inside the gap of the volume modes. Our explanation is independent of the topology of the modes and predicts that this robustness is a consequence of symmetry breaking of the dynamic magnetic fields of CMSSWs due to the off-diagonal part of the dipolar interaction tensor, which is present both for long- (dipole-dominated) and short-wavelength (exchange-dominated) spin waves. Micromagnetic simulations confirm the robust character of the CMSSWs. Our results open a new direction in designing highly efficient magnonic logic elements and devices employing CMSSWs in nanoscale thin films.

3.
Phys Rev Lett ; 122(24): 247202, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31322366

RESUMEN

Spin waves are investigated in yttrium iron garnet waveguides with a thickness of 39 nm and widths ranging down to 50 nm, i.e., with an aspect ratio thickness over width approaching unity, using Brillouin light scattering spectroscopy. The experimental results are verified by a semianalytical theory and micromagnetic simulations. A critical width is found, below which the exchange interaction suppresses the dipolar pinning phenomenon. This changes the quantization criterion for the spin-wave eigenmodes and results in a pronounced modification of the spin-wave characteristics. The presented semianalytical theory allows for the calculation of spin-wave mode profiles and dispersion relations in nanostructures.

4.
Phys Rev Lett ; 122(9): 097202, 2019 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-30932517

RESUMEN

We present the generation of whispering gallery magnons with unprecedented high wave vectors via nonlinear 3-magnon scattering in a µm-sized magnetic Ni_{81}Fe_{19} disc which is in the vortex state. These modes exhibit a strong localization at the perimeter of the disc and practically zero amplitude in an extended area around the vortex core. They originate from the splitting of the fundamental radial magnon modes, which can be resonantly excited in a vortex texture by an out-of-plane microwave field. We shed light on the basics of this nonlinear scattering mechanism from an experimental and theoretical point of view. Using Brillouin light scattering microscopy, we investigated the frequency and power dependence of the 3-magnon splitting. The spatially resolved mode profiles give evidence for the localization at the boundaries of the disc and allow for a direct determination of the modes wave number.

5.
Sci Rep ; 6: 36020, 2016 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-27786261

RESUMEN

Spin-Hall oscillators (SHO) are promising sources of spin-wave signals for magnonics applications, and can serve as building blocks for magnonic logic in ultralow power computation devices. Thin magnetic layers used as "free" layers in SHO are in contact with heavy metals having large spin-orbital interaction, and, therefore, could be subject to the spin-Hall effect (SHE) and the interfacial Dzyaloshinskii-Moriya interaction (i-DMI), which may lead to the nonreciprocity of the excited spin waves and other unusual effects. Here, we analytically and micromagnetically study magnetization dynamics excited in an SHO with oblique magnetization when the SHE and i-DMI act simultaneously. Our key results are: (i) excitation of nonreciprocal spin-waves propagating perpendicularly to the in-plane projection of the static magnetization; (ii) skyrmions generation by pure spin-current; (iii) excitation of a new spin-wave mode with a spiral spatial profile originating from a gyrotropic rotation of a dynamical skyrmion. These results demonstrate that SHOs can be used as generators of magnetic skyrmions and different types of propagating spin-waves for magnetic data storage and signal processing applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA