Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 60(14): 7553-7558, 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33350565

RESUMEN

The landscape of possible polymorphs for some metal-organic frameworks (MOFs) can pose a challenge for controlling the outcome of their syntheses. Demonstrated here is the use of a template to control in the vapor-assisted formation of zeolitic imidazolate framework (ZIF) powders and thin films. Introducing a small amount of either ethanol or dimethylformamide vapor during the reaction between ZnO and 4,5-dichloroimidazole vapor results in the formation of the porous ZIF-71 phase, whereas other conditions lead to the formation of the dense ZIF-72 phase or amorphous materials. Time-resolved in situ small-angle X-ray scattering reveals that the porous phase is metastable and can be transformed into its dense polymorph. This transformation is avoided through the introduction of template vapor. The porosity of the resulting ZIF powders and films was studied by N2 and Kr physisorption, as well as positron annihilation lifetime spectroscopy. The templating principle was demonstrated for other members of the ZIF family as well, including the ZIF-7 series, ZIF-8_Cl, and ZIF-8_Br.

2.
Chemistry ; 26(47): 10841-10848, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32476184

RESUMEN

Energy-efficient indoors temperature and humidity control can be realised by using the reversible adsorption and desorption of water in porous materials. Stable microporous aluminium-based metal-organic frameworks (MOFs) present promising water sorption properties for this goal. The development of synthesis routes that make use of available and affordable building blocks and avoid the use of organic solvents is crucial to advance this field. In this work, two scalable synthesis routes under mild reaction conditions were developed for aluminium-based MOFs: (1) in aqueous solutions using a continuous-flow reactor and (2) through the vapour-assisted conversion of solid precursors. Fumaric acid, its methylated analogue mesaconic acid, as well as mixtures of the two were used as linkers to obtain polymorph materials with tuneable water sorption properties. The synthesis conditions determine the crystal structure and either the MIL-53 or MIL-68 type structure with square-grid or kagome-grid topology, respectively, is formed. Fine-tuning resulted in new MOF materials thus far inaccessible through conventional synthesis routes. Furthermore, by varying the linker ratio, the water sorption properties can be continuously adjusted while retaining the sigmoidal isotherm shape advantageous for heat transformation and room climatisation applications.

3.
Environ Sci Technol ; 53(15): 8640-8648, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31286771

RESUMEN

The chlorine resistance of nanofiltration and reverse osmosis membranes is of high importance in the water treatment industry. Elastic recoil detection (ERD) is now presented as a powerful tool to uniquely provide elemental depth profiles, including hydrogen, of NaOCl-treated polyamide-based thin-film composite (TFC) membranes. The influence of pressure, pH, and chlorine feed concentration on the volume-averaged Cl uptake, the location of chlorine throughout the membrane, and the z-gradient in the Cl/N ratio is demonstrated. The results suggest that (i) higher volume-averaged Cl uptakes are achieved at higher chlorine doses and at acidic pH; (ii) chlorination is mostly restricted to the top layer; (iii) a gradient in the Cl/N ratio exists along the membrane depth; and (iv) the shape of this gradient is influenced by the chlorination pH and the applied pressure. Conclusions on the chlorination mechanisms could also be deduced. Conversely, no conclusive relationships between H fractions and Cl uptake could be drawn, even though changes in the H content after chlorination were observed. To corroborate these results and fully exploit the potential of ERD, the exact microstructure of the (chlorinated) TFC membranes should be better understood.


Asunto(s)
Nylons , Purificación del Agua , Filtración , Halogenación , Membranas Artificiales , Ósmosis
4.
Angew Chem Int Ed Engl ; 58(8): 2423-2427, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30548136

RESUMEN

Metal-organic frameworks (MOFs) enable the design of host-guest systems with specific properties. In this work, we show how the confinement of anthracene in a well-chosen MOF host leads to reversible yellow-to-purple photoswitching of the fluorescence emission. This behavior has not been observed before for anthracene, either in pure form or adsorbed in other porous hosts. The photoresponse of the host-guest system is caused by the photodimerization of anthracene, which is greatly facilitated by the pore geometry, connectivity, and volume as well as the structural flexibility of the MOF host. The photoswitching behavior was used to fabricate photopatternable and erasable surfaces that, in combination with data encryption and decryption, hold promise in product authentication and secure communication applications.

5.
Water Res ; 190: 116756, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33387949

RESUMEN

Ion-exchange membrane (IEM)-based processes are used in the industry or in the drinking water production to achieve selective separation. The transport mechanisms of organic solutes/micropollutants (i.e., paracetamol, clofibric acid, and atenolol) at a single-membrane level in diffusion cells were similar to that of salts (i.e., diffusion, convection, and electromigration). The presence of an equal concentration of salts at both sides of the membrane slightly decreased the transport of organics due to lower diffusion coefficients of organics in salts and the increase of hindrance and/or decrease of partitioning in the membrane phase. In the presence of a salt gradient, diffusion was the main transport mechanism for non-charged organics, while the counter-transport of salts promoted the transport of charged organics through electromigration (electroneutrality). Conversely, the co-transport of salts hindered the transport of charged organics, where diffusion was the main transport mechanism of the latter. Although convection played a role in the transport of non-charged organics, its influence on the charged solutes was minimal due to the dominant electromigration. Positron annihilation lifetime spectroscopy showed a bimodal size distribution of free-volume elements of IEMs, with both classes of free-volume elements contributing to salt transport, while larger organics can only transport through the larger class.


Asunto(s)
Agua Potable , Difusión , Intercambio Iónico , Soluciones , Solventes
6.
iScience ; 24(2): 102095, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33659871

RESUMEN

There is no efficient wastewater treatment solution for removing organic micropollutants (OMPs), which, therefore, are continuously introduced to the Earth's surface waters. This creates a severe risk to aquatic ecosystems and human health. In emerging water treatment processes based on ion-exchange membranes (IEM), transport of OMPs through membranes remains unknown. We performed a comprehensive investigation of the OMP transport through a single IEM under non-steady-state conditions. For the first time, positron annihilation lifetime spectroscopy was used to study differences in the free volume element radius between anion- and cation-exchange membranes, and between their thicknesses. The dynamic diffusion-adsorption model was used to calculate the adsorption and diffusion coefficients of OMPs. Remarkably, diffusion coefficients increased with the membrane thickness, where its surface resistance was more evident in thinner membranes. Presented results will contribute to the improved design of next-generation IEMs with higher selectivity toward multiple types of organic compounds.

7.
Adv Mater ; 33(17): e2006993, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33733524

RESUMEN

Thin films of crystalline and porous metal-organic frameworks (MOFs) have great potential in membranes, sensors, and microelectronic chips. While the morphology and crystallinity of MOF films can be evaluated using widely available techniques, characterizing their pore size, pore volume, and specific surface area is challenging due to the low amount of material and substrate effects. Positron annihilation lifetime spectroscopy (PALS) is introduced as a powerful method to obtain pore size information and depth profiling in MOF films. The complementarity of this approach to established physisorption-based methods such as quartz crystal microbalance (QCM) gravimetry, ellipsometric porosimetry (EP), and Kr physisorption (KrP) is illustrated. This comprehensive discussion on MOF thin film porosimetry is supported by experimental data for thin films of ZIF-8.

8.
RSC Adv ; 8(16): 8813-8827, 2018 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35539860

RESUMEN

Following current strong demands from, among others, paper, food and mining industries, a novel type of nanofiltration membrane was developed, which displays excellent performance in terms of selectivity/flux with a unique combination of chemical stability over the full (0-14) pH-range and thermal stability up to 120 °C. The membrane consists of polyvinylidene fluoride grafted with polystyrene sulfonic acid. The optimum membrane showed water permeances of 2.4 L h-1 m-2 bar-1 while retaining NaCl, MgSO4 and Rhodamine B (479 Da) for respectively ≈60%, ≈80% and >96%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA