Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Comput Biol ; 20(1): e1011287, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38175850

RESUMEN

Many pathogens of humans and livestock also infect wildlife that can act as a reservoir and challenge disease control or elimination. Efficient and effective prioritization of research and management actions requires an understanding of the potential for new tools to improve elimination probability with feasible deployment strategies that can be implemented at scale. Wildlife vaccination is gaining interest as a tool for managing several wildlife diseases. To evaluate the effect of vaccinating white-tailed deer (Odocoileus virginianus), in combination with harvest, in reducing and eliminating bovine tuberculosis from deer populations in Michigan, we developed a mechanistic age-structured disease transmission model for bovine tuberculosis with integrated disease management. We evaluated the impact of pulse vaccination across a range of vaccine properties. Pulse vaccination was effective for reducing disease prevalence rapidly with even low (30%) to moderate (60%) vaccine coverage of the susceptible and exposed deer population and was further improved when combined with increased harvest. The impact of increased harvest depended on the relative strength of transmission modes, i.e., direct vs indirect transmission. Vaccine coverage and efficacy were the most important vaccine properties for reducing and eliminating disease from the local population. By fitting the model to the core endemic area of bovine tuberculosis in Michigan, USA, we identified feasible integrated management strategies involving vaccination and increased harvest that reduced disease prevalence in free-ranging deer. Few scenarios led to disease elimination due to the chronic nature of bovine tuberculosis. A long-term commitment to regular vaccination campaigns, and further research on increasing vaccines efficacy and uptake rate in free-ranging deer are important for disease management.


Asunto(s)
Ciervos , Mycobacterium bovis , Tuberculosis Bovina , Vacunas , Animales , Humanos , Bovinos , Tuberculosis Bovina/epidemiología , Tuberculosis Bovina/prevención & control , Animales Salvajes , Vacunación/veterinaria
2.
J Anim Ecol ; 90(4): 820-833, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33340089

RESUMEN

Contact heterogeneity among hosts determines invasion and spreading dynamics of infectious disease, thus its characterization is essential for identifying effective disease control strategies. Yet, little is known about the factors shaping contact networks in many wildlife species and how wildlife management actions might affect contact networks. Wild pigs in North America are an invasive, socially structured species that pose a health concern for domestic swine given their ability to transmit numerous devastating diseases such as African swine fever (ASF). Using proximity loggers and GPS data from 48 wild pigs in Florida and South Carolina, USA, we employed a probabilistic framework to estimate weighted contact networks. We determined the effects of sex, social group and spatial distribution (monthly home-range overlap and distance) on wild pig contact. We also estimated the impacts of management-induced perturbations on contact and inferred their effects on ASF establishment in wild pigs with simulation. Social group membership was the primary factor influencing contacts. Between-group contacts depended primarily on space use characteristics, with fewer contacts among groups separated by >2 km and no contacts among groups >4 km apart within a month. Modelling ASF dynamics on the contact network demonstrated that indirect contacts resulting from baiting (a typical method of attracting wild pigs or game species to a site to enhance recreational hunting) increased the risk of disease establishment by ~33% relative to direct contact. Low-intensity population reduction (<5.9% of the population) had no detectable impact on contact structure but reduced predicted ASF establishment risk relative to no population reduction. We demonstrate an approach for understanding the relative role of spatial, social and individual-level characteristics in shaping contact networks and predicting their effects on disease establishment risk, thus providing insight for optimizing disease control in spatially and socially structured wildlife species.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Enfermedades de los Porcinos , Animales , Florida , América del Norte , South Carolina , Sus scrofa , Porcinos , Enfermedades de los Porcinos/epidemiología
3.
Ecol Appl ; 30(6): e02126, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32167631

RESUMEN

Populations of invasive species often spread heterogeneously across a landscape, consisting of local populations that cluster in space but are connected by dispersal. A fundamental dilemma for invasive species control is how to optimally allocate limited fiscal resources across local populations. Theoretical work based on perfect knowledge of demographic connectivity suggests that targeting local populations from which migrants originate (sources) can be optimal. However, demographic processes such as abundance and dispersal can be highly uncertain, and the relationship between local population density and damage costs (damage function) is rarely known. We used a metapopulation model to understand how budget and uncertainty in abundance, connectivity, and the damage function, together impact return on investment (ROI) for optimal control strategies. Budget, observational uncertainty, and the damage function had strong effects on the optimal resource allocation strategy. Uncertainty in dispersal probability was the least important determinant of ROI. The damage function determined which resource prioritization strategy was optimal when connectivity was symmetric but not when it was asymmetric. When connectivity was asymmetric, prioritizing source populations had a higher ROI than allocating effort equally across local populations, regardless of the damage function, but uncertainty in connectivity structure and abundance reduced ROI of the optimal prioritization strategy by 57% on average depending on the control budget. With low budgets (monthly removal rate of 6.7% of population), there was little advantage to prioritizing resources, especially when connectivity was high or symmetric, and observational uncertainty had only minor effects on ROI. Allotting funding for improved monitoring appeared to be most important when budgets were moderate (monthly removal of 13-20% of the population). Our result showed that multiple sources of observational uncertainty should be considered concurrently for optimizing ROI. Accurate estimates of connectivity direction and abundance were more important than accurate estimates of dispersal rates. Developing cost-effective surveillance methods to reduce observational uncertainties, and quantitative frameworks for determining how resources should be spatially apportioned to multiple monitoring and control activities are important and challenging future directions for optimizing ROI for invasive species control programs.


Asunto(s)
Conservación de los Recursos Naturales , Especies Introducidas , Modelos Biológicos , Densidad de Población , Incertidumbre
4.
Ecol Appl ; 30(1): e02015, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31596984

RESUMEN

Functional responses describe how changing resource availability affects consumer resource use, thus providing a mechanistic approach to prediction of the invasibility and potential damage of invasive alien species (IAS). However, functional responses can be context dependent, varying with resource characteristics and availability, consumer attributes, and environmental variables. Identifying context dependencies can allow invasion and damage risk to be predicted across different ecoregions. Understanding how ecological factors shape the functional response in agro-ecosystems can improve predictions of hotspots of highest impact and inform strategies to mitigate damage across locations with varying crop types and availability. We linked heterogeneous movement data across different agro-ecosystems to predict ecologically driven variability in the functional responses. We applied our approach to wild pigs (Sus scrofa), one of the most successful and detrimental IAS worldwide where agricultural resource depredation is an important driver of spread and establishment. We used continental-scale movement data within agro-ecosystems to quantify the functional response of agricultural resources relative to availability of crops and natural forage. We hypothesized that wild pigs would selectively use crops more often when natural forage resources were low. We also examined how individual attributes such as sex, crop type, and resource stimulus such as distance to crops altered the magnitude of the functional response. There was a strong agricultural functional response where crop use was an accelerating function of crop availability at low density (Type III) and was highly context dependent. As hypothesized, there was a reduced response of crop use with increasing crop availability when non-agricultural resources were more available, emphasizing that crop damage levels are likely to be highly heterogeneous depending on surrounding natural resources and temporal availability of crops. We found significant effects of crop type and sex, with males spending 20% more time and visiting crops 58% more often than females, and both sexes showing different functional responses depending on crop type. Our application demonstrates how commonly collected animal movement data can be used to understand context dependencies in resource use to improve our understanding of pest foraging behavior, with implications for prioritizing spatiotemporal hotspots of potential economic loss in agro-ecosystems.


Asunto(s)
Productos Agrícolas , Ecosistema , Agricultura , Animales , Femenino , Masculino , Movimiento
5.
Environ Geochem Health ; 36(6): 1049-61, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24711146

RESUMEN

Free-ranging cervids acquire most of their essential minerals through forage consumption, though occasionally seek other sources to account for seasonal mineral deficiencies. Mineral sources occur as natural geological deposits (i.e., licks) or as anthropogenic mineral supplements. In both scenarios, these sources commonly serve as focal sites for visitation. We monitored 11 licks in Rocky Mountain National Park, north-central Colorado, using trail cameras to quantify daily visitation indices (DVI) and soil consumption indices (SCI) for Rocky Mountain elk (Cervus elaphus) and mule deer (Odocoileus hemionus) during summer 2006 and documented elk, mule deer, and moose (Alces alces) visiting licks. Additionally, soil samples were collected, and mineral concentrations were compared to discern levels that explain rates of visitation. Relationships between response variables; DVI and SCI, and explanatory variables; elevation class, moisture class, period of study, and concentrations of minerals were examined. We found that DVI and SCI were greatest at two wet, low-elevation licks exhibiting relatively high concentrations of manganese and sodium. Because cervids are known to seek Na from soils, we suggest our observed association of Mn with DVI and SCI was a likely consequence of deer and elk seeking supplemental dietary Na. Additionally, highly utilized licks such as these provide an area of concentrated cervid occupation and interaction, thus increasing risk for environmental transmission of infectious pathogens such as chronic wasting disease, which has been shown to be shed in the saliva, urine, and feces of infected cervids.


Asunto(s)
Ciervos/fisiología , Conducta Alimentaria , Motivación , Suelo/química , Animales , Colorado , Ecosistema , Pica , Especificidad de la Especie , Enfermedad Debilitante Crónica/transmisión
6.
Pest Manag Sci ; 80(7): 3227-3237, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38357838

RESUMEN

BACKGROUND: Wild pigs (Sus scrofa) are an invasive and destructive species throughout many regions of the world. A sodium nitrite (SN) toxic bait is currently used in Australia and being developed for use in the US and other countries to combat the increasing populations of wild pigs. In the US, efforts to modify the Australian SN-toxic bait and baiting strategy have focused on reducing issues with non-target animals accessing the SN-toxic bait spilled outside of bait stations by wild pigs. We tested and compared modifications for efficacy (with wild pigs) and hazards (with non-targets) in north-central Texas, US during summer (July 2021) and winter (March 2023) seasons. RESULTS: During both seasons we found that visitation to the bait sites declined 94-99% after deploying the SN-toxic bait, and we found a total of 106 dead wild pigs, indicating considerable lethality for the local population. Prior to deploying the SN-toxic bait, Global Positioning System (GPS)-collared wild pigs were more likely to cease visiting bait sites during summer when foraging resources were abundant. Farrowing decreased visitation to bait sites during the winter. We observed no dead non-targets during summer; winter results showed an average of 5.2 dead migrating birds per bait site (primarily Dark-eye juncos [Junco hyemalis]) from consuming SN-toxic bait spilled by wild pigs. The presence and winter-foraging behaviors of migrating birds appeared to increase hazards for those species. CONCLUSION: The current formulation of SN-toxic bait was effective at removing wild pigs during both seasons, however it is clear that different baiting strategies may be required in winter when migrating birds are present. Baiting wild pigs prior to farrowing during the winter, and during drier summers, may further improve efficacy of the bait. Reducing hazards to non-targets could be achieved by refining the SN-toxic bait or modifying bait stations to decrease the potential for spillage, decreasing environmental persistence if spilled, or decreasing attractiveness to migrating birds. © 2024 Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Asunto(s)
Estaciones del Año , Nitrito de Sodio , Sus scrofa , Animales , Texas , Control de Plagas/métodos , Aves , Especies Introducidas , Porcinos
7.
Front Vet Sci ; 11: 1354772, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38414651

RESUMEN

Introduction: Free-ranging white-tailed deer (Odocoileus virginianus) in northeastern lower Michigan, (United States) are a self-sustaining reservoir for bovine tuberculosis (bTB). Farm mitigation practices, baiting bans, and antlerless deer harvests have been ineffective in eliminating bTB in white-tailed deer and risks to cattle. The apparent prevalence has remained relatively constant in deer, prompting interest among wildlife researchers, managers, and veterinarians for an effective means of vaccinating deer against bTB. The commonly used human vaccine for bTB, Bacillus Calmette Guerin (BCG), is the primary candidate with oral delivery being the logical means for vaccinating deer. Materials and methods: We developed vaccine delivery units and incorporated the biomarker Rhodamine B before delivering them to deer to assess the level of coverage achievable. Following deployment of Rhodamine B-laden vaccine delivery units on 17 agricultural study sites in Alpena County, MI in Mar/Apr 2016, we sampled deer to detect evidence of Rhodamine B consumption. Results and discussion: We collected a total of 116 deer and sampled them for vibrissae/rumen marking and found 66.3% (n = 77) of the deer collected exhibited evidence of vaccine delivery unit consumption. Understanding the level of coverage we achieved with oral delivery of a biomarker in vaccine delivery units to deer enables natural resource professionals to forecast expectations of a next step toward further minimizing bTB in deer.

8.
Pest Manag Sci ; 79(12): 4765-4773, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37462084

RESUMEN

BACKGROUND: As the population and range of wild pigs (Sus scrofa) continue to grow across North America, there has been an increase in environmental and economic damages caused by this invasive species, and control efforts to reduce damages have increased concomitantly. Despite the expanding impacts and costs associated with population control of wild pigs, the extent to which wild pig control reduces populations and diminishes environmental and agricultural damages are rarely quantified. The goal of this study is to quantify changes in wild pig relative abundance and subsequent changes in damages caused by invasive wild pigs in response to control. RESULTS: Using a combination of wild pig population surveys, agricultural damage assessments, and environmental rooting surveys across 19 mixed forest-agricultural properties in South Carolina, USA, we quantified changes in wild pig relative abundance and associated damages over a 3-year period following implementation of a professional control program. Following implementation of control efforts, both the number of wild pig detections and estimated abundance decreased markedly. Within 24 months relative abundance was reduced by an average of ~70%, which resulted in a corresponding decline in environmental rooting damage by ~99%. CONCLUSION: Our findings suggest that sustained wild pig control efforts can substantially reduce wild pig relative abundance, which in turn resulted in a reduction in environmental rooting damage by wild pigs. Ultimately this study will help fill critical knowledge gaps regarding the efficacy of wild pig control programs and the effort needed to reduce impacts to native ecosystems, livestock, and crops. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Agricultura , Ecosistema , Animales , Porcinos , Control de Plagas , América del Norte , Sus scrofa , Animales Salvajes/fisiología
9.
Pest Manag Sci ; 79(11): 4589-4598, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37431651

RESUMEN

BACKGROUND: In 2018, a sodium nitrite (SN)-based toxic bait for invasive wild pigs (hereafter wild pigs; Sus scrofa), was evaluated to determine its effectiveness in reducing local wild pig populations in Texas. Localized population reductions of >70% were achieved, but spillage of bait outside wild pig-specific feeders (bait stations) caused by feeding wild pigs resulted in the deaths of non-target animals. To evaluate risks to non-target animals, we tested whether bait presentation influenced the total amount of bait spilled by wild pigs and estimated the associated risk to non-target species. RESULTS: We found that bait spilled outside bait stations could be reduced by >90% when compacted in trays, as opposed to being manually crumbled into pieces. We documented a mean spill rate of 0.913 g of bait per wild pig. Conservative risk assessments for nine non-target species for which SN toxicity data exist indicate that there is relatively low risk of lethal exposure, apart from zebra finches (Taeniopygia guttata) and white mice. Our results indicate that there may be enough spilled bait per feeding wild pig to kill 9.5 or 3.5 individuals of these species, respectively. Other species assessed range from 0.002 to 0.406 potential mortalities per wild pig. CONCLUSION: We demonstrated that the amount of bait spilled by wild pigs during feeding and the associated risk to non-target animals can be minimized by presenting the bait compacted in trays within bait stations. We recommend that baits be tightly compacted and secured in bait stations to minimize risks to non-target animals from spilled bait by wild pigs. © 2023 Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

10.
Ecol Evol ; 13(3): e9774, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36993145

RESUMEN

Quantifying spatiotemporally explicit interactions within animal populations facilitates the understanding of social structure and its relationship with ecological processes. Data from animal tracking technologies (Global Positioning Systems ["GPS"]) can circumvent longstanding challenges in the estimation of spatiotemporally explicit interactions, but the discrete nature and coarse temporal resolution of data mean that ephemeral interactions that occur between consecutive GPS locations go undetected. Here, we developed a method to quantify individual and spatial patterns of interaction using continuous-time movement models (CTMMs) fit to GPS tracking data. We first applied CTMMs to infer the full movement trajectories at an arbitrarily fine temporal scale before estimating interactions, thus allowing inference of interactions occurring between observed GPS locations. Our framework then infers indirect interactions-individuals occurring at the same location, but at different times-while allowing the identification of indirect interactions to vary with ecological context based on CTMM outputs. We assessed the performance of our new method using simulations and illustrated its implementation by deriving disease-relevant interaction networks for two behaviorally differentiated species, wild pigs (Sus scrofa) that can host African Swine Fever and mule deer (Odocoileus hemionus) that can host chronic wasting disease. Simulations showed that interactions derived from observed GPS data can be substantially underestimated when temporal resolution of movement data exceeds 30-min intervals. Empirical application suggested that underestimation occurred in both interaction rates and their spatial distributions. CTMM-Interaction method, which can introduce uncertainties, recovered majority of true interactions. Our method leverages advances in movement ecology to quantify fine-scale spatiotemporal interactions between individuals from lower temporal resolution GPS data. It can be leveraged to infer dynamic social networks, transmission potential in disease systems, consumer-resource interactions, information sharing, and beyond. The method also sets the stage for future predictive models linking observed spatiotemporal interaction patterns to environmental drivers.

11.
Pest Manag Sci ; 79(10): 3819-3829, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37218996

RESUMEN

BACKGROUND: Data on the movement behavior of translocated wild pigs is needed to develop appropriate response strategies for containing and eliminating new source populations following translocation events. We conducted experimental trials to compare the home range establishment and space-use metrics, including the number of days and distance traveled before becoming range residents, for wild pigs translocated with their social group and individually. RESULTS: We found wild pigs translocated with their social group made less extensive movements away from the release location and established a stable home range ~5 days faster than those translocated individually. We also examined how habitat quality impacted the home range sizes of translocated wild pigs and found wild pigs maintained larger ranges in areas with higher proportion of low-quality habitat. CONCLUSION: Collectively, our findings suggest translocations of invasive wild pigs have a greater probability of establishing a viable population near the release site when habitat quality is high and when released with members of their social unit compared to individuals moved independent of their social group or to low-quality habitat. However, all wild pigs translocated in our study made extensive movements from their release location, highlighting the potential for single translocation events of either individuals or groups to have far-reaching consequences within a much broader landscape beyond the location where they are released. These results highlight the challenges associated with containing populations in areas where illegal introduction of wild pigs occurs, and the need for rapid response once releases are identified. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Ecosistema , Sus scrofa , Animales , Porcinos , Sus scrofa/fisiología , Fenómenos de Retorno al Lugar Habitual , Movimiento , Estructura Social
12.
Mov Ecol ; 11(1): 74, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38037089

RESUMEN

Contact among animals is crucial for various ecological processes, including social behaviors, disease transmission, and predator-prey interactions. However, the distribution of contact events across time and space is heterogeneous, influenced by environmental factors and biological purposes. Previous studies have assumed that areas with abundant resources and preferred habitats attract more individuals and, therefore, lead to more contact. To examine the accuracy of this assumption, we used a use-available framework to compare landscape factors influencing the location of contacts between wild pigs (Sus scrofa) in two study areas in Florida and Texas (USA) from those influencing non-contact space use. We employed a contact-resource selection function (RSF) model, where contact locations were defined as used points and locations without contact as available points. By comparing outputs from this contact RSF with a general, population-level RSF, we assessed the factors driving both habitat selection and contact. We found that the landscape predictors (e.g., wetland, linear features, and food resources) played different roles in habitat selection from contact processes for wild pigs in both study areas. This indicated that pigs interacted with their landscapes differently when choosing habitats compared to when they encountered other individuals. Consequently, relying solely on the spatial overlap of individual or population-level RSF models may lead to a misleading understanding of contact-related ecology. Our findings challenge prevailing assumptions about contact and introduce innovative approaches to better understand the ecological drivers of spatially explicit contact. By accurately predicting the spatial distribution of contact events, we can enhance our understanding of contact based ecological processes and their spatial dynamics.

13.
Ecol Evol ; 13(3): e9853, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36911312

RESUMEN

Wild pigs (Sus scrofa) are invading many areas globally and impacting biodiversity and economies in their non-native range. Thus, wild pigs are often targeted for eradication efforts. Age- and sex-specific body measurements are important for informing these eradication efforts because they reflect body condition, resource availability, and fecundity, which are common indicators of population trajectory. However, body mass is often difficult to collect, especially on large individuals that require specialized equipment or multiple people to weigh. Measurements that can be rapidly taken by a single land or wildlife manager on any size wild pig without aid from specialized equipment would be beneficial if they accurately infer wild pig body mass. Our goals were to assess whether morphometric measurements could accurately predict wild pig body mass, and to provide tools to directly input these measures and estimate wild pig body mass. Using linear models, we quantified the relationship between body mass and morphometric measurements (i.e., body length, chest girth, ear length, eye to snout length, hindfoot length, shoulder length, and tail length) from a subset (n = 102) of wild pigs culled at the Mississippi Alluvial Valley, Mississippi, USA. We evaluated separate models for each individual morphometric measurement. We then used the model coefficients to develop equations to predict wild pig body mass. We validated these equations predicting body mass of 1592 individuals collected across eight areas in Australia, Guam, and the USA for cross-validation. Each developed equation remained accurate when cross-validated across regions. Body length, chest girth, and shoulder length were the morphometrics that best predicted wild pig body mass. Our analyses indicated it is possible to use the presented equations to infer wild pig body mass from simple metrics.

14.
Pest Manag Sci ; 78(3): 914-928, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34719092

RESUMEN

BACKGROUND: Determining factors influencing animal movements at a temporal scale that is similar to that at which management actions are conducted (e.g. weekly) is crucial for identifying efficient methods of wildlife conservation and management. Using global positioning system (GPS) data from 49 wild pigs in the southeast United States, we constructed weekly 50% and 95% utilization distributions to quantify the effects of biotic and abiotic factors on weekly core area and home range size, as well as home range shape. RESULTS: We found vegetative composition (i.e. proportion of bottomland hardwoods), season (based on forage availability), meteorological conditions (i.e. temperature and pressure), and sex influenced wild pig weekly home range and core area size, while vegetative composition (i.e. proportion of upland pines) and landscape features (i.e. distance to streams) also were important factors influencing home range shape. At close distances to streams, wild pigs had more elongate home ranges when their home ranges comprised less upland pine habitat; however, farther from streams, there was no change in home range shape across fluctuating proportions of upland pines. CONCLUSION: These results demonstrate that fine-scale wild pig home ranges and movements are pliable from week to week and influenced by several habitat, landscape, and meteorological attributes that can easily be quantified from available land use and meteorological databases. These findings are important for designing monitoring studies, identifying high risk zones for disease transmission, planning response to disease emergence events, and allowing more effective and efficient short-term management planning.


Asunto(s)
Ecosistema , Fenómenos de Retorno al Lugar Habitual , Animales , Animales Salvajes , Estaciones del Año , Sus scrofa , Porcinos
15.
Sci Rep ; 12(1): 4023, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35256629

RESUMEN

An individual's spatial behavior is shaped by social and environmental factors and provides critical information about population processes to inform conservation and management actions. Heterogeneity in spatial overlap among conspecifics can be evaluated using estimates of home ranges and core areas and used to understand factors influencing space use and territoriality. To understand and test predictions about spatial behavior in an invasive large mammal, the wild pig (Sus scrofa), we examined variation in space use between sexes and seasons. We predicted that if animals were territorial that there would be a reduction in space-use overlap when comparing overlap of home ranges (HR-HR), to home ranges and core areas (HR-CA), and in-turn between core areas (CA-CA). Home ranges and core areas were estimated for 54 wild pigs at Buck Island Ranch, FL from GPS telemetry data. Overlap indices were calculated to estimate the strength (space-use overlap) and number of potential interactions within three wet seasons (June-October) and two dry seasons (December-April). Among sexes, home range size did not vary seasonally, and males exhibited larger home ranges compared to females (M = 10.36 ± 0.79 km2 (± SE), F = 3.21 ± 0.16 km2). Strength of overlap varied by season with wild pig home ranges overlapping more during the dry season. Males interacted with a greater number of individuals of both sexes, compared to females, and exhibited greater strength of overlap during the dry season. Consistent with our predictions, wild pigs appeared to exhibit territorial behavior, where strength of overlap decreased when comparing HR-HR to HR-CA and HR-CA to CA-CA. Our framework can be used to understand patterns of space use and territoriality in populations, which has important implications in understanding intraspecific interactions and population processes, such as how pathogens and parasites might spread within and among populations.


Asunto(s)
Fenómenos de Retorno al Lugar Habitual , Territorialidad , Animales , Femenino , Masculino , Estaciones del Año , Conducta Espacial , Sus scrofa , Porcinos
16.
Transbound Emerg Dis ; 69(5): e3111-e3127, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35881004

RESUMEN

African swine fever virus (ASFv) is a virulent pathogen that threatens domestic swine industries globally and persists in wild boar populations in some countries. Persistence in wild boar can challenge elimination and prevent disease-free status, making it necessary to address wild swine in proactive response plans. In the United States, invasive wild pigs are abundant and found across a wide range of ecological conditions that could drive different epidemiological dynamics among populations. Information on the size of the control areas required to rapidly eliminate the ASFv in wild pigs and how this area should change with management constraints and local ecology is needed to optimize response planning. We developed a spatially explicit disease transmission model contrasting wild pig movement and contact ecology in two ecosystems in Southeastern United States. We simulated ASFv spread and determined the optimal response area (reported as the radius of a circle) for eliminating ASFv rapidly over a range of detection times (when ASFv was detected relative to the true date of introduction), culling capacities (proportion of wild pigs in the culling zone removed weekly) and wild pig densities. Large radii for response areas (14 km) were needed under most conditions but could be shortened with early detection (≤ 8 weeks) and high culling capacities (≥ 15% weekly). Under most conditions, the ASFv was eliminated in less than 22 weeks using optimal control radii, although ecological conditions with high rates of wild pig movement required higher culling capacities (≥ 10% weekly) for elimination within 1 year. The results highlight the importance of adjusting response plans based on local ecology and show that wild pig movement is a better predictor of the optimal response area than the number of ASFv cases early in the outbreak trajectory. Our framework provides a tool for determining optimal control plans in different areas, guiding expectations of response impacts, and planning resources needed for rapid elimination.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Enfermedades de los Porcinos , Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/prevención & control , Virus de la Fiebre Porcina Africana/fisiología , Animales , Brotes de Enfermedades/prevención & control , Brotes de Enfermedades/veterinaria , Ecosistema , Sus scrofa , Porcinos
18.
Appl Environ Microbiol ; 77(13): 4313-7, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21571886

RESUMEN

Chronic wasting disease (CWD) and scrapie can be transmitted through indirect environmental routes, possibly via soil, and a practical decontamination strategy for prion-contaminated soil is currently unavailable. In the laboratory, an enzymatic treatment under environmentally relevant conditions (22°C, pH 7.4) can degrade soil-bound PrPSc below the limits of Western blot detection. We developed and used a quantitative serial protein misfolding cyclic amplification (PMCA) protocol to characterize the amplification efficiency of treated soil samples relative to controls of known infectious titer. Our results suggest large (10(4)- to >10(6)-fold) decreases in soil-bound prion infectivity following enzyme treatment, demonstrating that a mild enzymatic treatment could effectively reduce the risk of prion disease transmission via soil or other environmental surfaces.


Asunto(s)
Desinfección/métodos , Priones/metabolismo , Suelo/química , Subtilisina/metabolismo , Concentración de Iones de Hidrógeno , Temperatura
19.
PLoS One ; 16(11): e0259260, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34739496

RESUMEN

Interspecific interactions among mesocarnivores can influence community dynamics and resource partitioning. Insights into these interactions can enhance understanding of local ecological processes that have impacts on pathogen transmission, such as the rabies lyssavirus. Host species ecology can provide an important baseline for disease management strategies especially in biologically diverse ecosystems and heterogeneous landscapes. We used a mesocarnivore guild native to the southwestern United States, a regional rabies hotspot, that are prone to rabies outbreaks as our study system. Gray foxes (Urocyon cinereoargenteus), striped skunks (Mephitis mephitis), bobcats (Lynx rufus), and coyotes (Canis latrans) share large portions of their geographic ranges and can compete for resources, occupy similar niches, and influence population dynamics of each other. We deployed 80 cameras across two mountain ranges in Arizona, stratified by vegetation type. We used two-stage modeling to gain insight into species occurrence and co-occurrence patterns. There was strong evidence for the effects of elevation, season, and temperature impacting detection probability of all four species, with understory height and canopy cover also influencing gray foxes and skunks. For all four mesocarnivores, a second stage multi-species co-occurrence model better explained patterns of detection than the single-species occurrence model. These four species are influencing the space use of each other and are likely competing for resources seasonally. We did not observe spatial partitioning between these competitors, likely due to an abundance of cover and food resources in the biologically diverse system we studied. From our results we can draw inferences on community dynamics to inform rabies management in a regional hotspot. Understanding environmental factors in disease hotspots can provide useful information to develop more reliable early-warning systems for viral outbreaks. We recommend that disease management focus on delivering oral vaccine baits onto the landscape when natural food resources are less abundant, specifically during the two drier seasons in Arizona (pre-monsoon spring and autumn) to maximize intake by all mesocarnivores.


Asunto(s)
Rabia/prevención & control , Rabia/transmisión , Animales , Animales Salvajes/virología , Arizona , Coyotes/virología , Manejo de la Enfermedad , Ecosistema , Conducta Alimentaria , Zorros/virología , Lynx/virología , Mephitidae/virología , Vacunas Antirrábicas/administración & dosificación , Virus de la Rabia/patogenicidad
20.
J Environ Qual ; 50(2): 441-453, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33410506

RESUMEN

Wild pigs (Sus scrofa) are a highly invasive species in many regions of the world and can act as ecosystem engineers in areas where they are established. In riparian ecosystems, wild pigs may affect water quality parameters and introduce fecal bacteria, although previous studies have reported conflicting results. We propose four conditions that we believe are needed for an accurate assessment of wild pig impacts on water quality and address each one in our study. Water samples were collected between May 2018 and June 2019 in riparian watersheds on a privately owned property in Alabama that was densely populated by wild pigs (treatment) and in watersheds at a nearby national forest without an established population. Samples were analyzed for concentrations of water quality parameters, such as anions and cations, dissolved oxygen, total suspended solids, N, dissolved organic C, and Escherichia coli and other fecal coliforms. An additional 38 samples were analyzed using quantitative polymerase chain reaction for swine fecal bacteroidetes. At treatment watersheds, specific conductivity and concentrations of organic N and C, SO4 2- , and Ca2+ were between 2 and 11 times that of reference watersheds. Escherichia coli values at treatment watersheds were 40 times reference watershed values. DNA from swine fecal bacteroidetes was detected in 70% of treatment samples and 0% of reference samples. Wild pigs are a threat to water quality in riparian areas, and our results indicate that it may be important to control populations upstream of major drinking water sources and recreational areas.


Asunto(s)
Ecosistema , Calidad del Agua , Animales , Bacteroidetes , Monitoreo del Ambiente , Heces , Mamíferos , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA