RESUMEN
In poikilotherms, temperature changes challenge the integration of physiological function. Within the complex nervous systems of the behaviorally sophisticated coleoid cephalopods, these problems are substantial. RNA editing by adenosine deamination is a well-positioned mechanism for environmental acclimation. We report that the neural proteome of Octopus bimaculoides undergoes massive reconfigurations via RNA editing following a temperature challenge. Over 13,000 codons are affected, and many alter proteins that are vital for neural processes. For two highly temperature-sensitive examples, recoding tunes protein function. For synaptotagmin, a key component of Ca2+-dependent neurotransmitter release, crystal structures and supporting experiments show that editing alters Ca2+ binding. For kinesin-1, a motor protein driving axonal transport, editing regulates transport velocity down microtubules. Seasonal sampling of wild-caught specimens indicates that temperature-dependent editing occurs in the field as well. These data show that A-to-I editing tunes neurophysiological function in response to temperature in octopus and most likely other coleoids.
Asunto(s)
Octopodiformes , Proteoma , Animales , Proteoma/metabolismo , Octopodiformes/genética , Edición de ARN , Temperatura , Sistema Nervioso/metabolismo , Adenosina Desaminasa/metabolismo , ARN/metabolismoRESUMEN
Posttranslational modifications (PTMs) of tubulin specify microtubules for specialized cellular functions and comprise what is termed a "tubulin code." PTMs of histones comprise an analogous "histone code," although the "readers, writers, and erasers" of the cytoskeleton and epigenome have heretofore been distinct. We show that methylation is a PTM of dynamic microtubules and that the histone methyltransferase SET-domain-containing 2 (SETD2), which is responsible for H3 lysine 36 trimethylation (H3K36me3) of histones, also methylates α-tubulin at lysine 40, the same lysine that is marked by acetylation on microtubules. Methylation of microtubules occurs during mitosis and cytokinesis and can be ablated by SETD2 deletion, which causes mitotic spindle and cytokinesis defects, micronuclei, and polyploidy. These data now identify SETD2 as a dual-function methyltransferase for both chromatin and the cytoskeleton and show a requirement for methylation in maintenance of genomic stability and the integrity of both the tubulin and histone codes.
Asunto(s)
Ensamble y Desensamble de Cromatina , Citoesqueleto/metabolismo , Código de Histonas , N-Metiltransferasa de Histona-Lisina/metabolismo , Línea Celular Tumoral , Citocinesis , Inestabilidad Genómica , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilación , Microtúbulos/metabolismo , Mitosis , Procesamiento Proteico-Postraduccional , Tubulina (Proteína)/metabolismoRESUMEN
In cells, mRNAs are transported to and positioned at subcellular areas to locally regulate protein production. Recent studies have identified the kinesin-3 family member motor protein KIF1C as an RNA transporter. However, it is not clear how KIF1C interacts with RNA molecules. Here, we show that the KIF1C C-terminal tail domain contains an intrinsically disordered region (IDR) that drives liquid-liquid phase separation (LLPS). KIF1C forms dynamic puncta in cells that display physical properties of liquid condensates and incorporate RNA molecules in a sequence-selective manner. Endogenous KIF1C forms condensates in cellular protrusions, where mRNAs are enriched in an IDR-dependent manner. Purified KIF1C tail constructs undergo LLPS in vitro at near-endogenous nM concentrations and in the absence of crowding agents and can directly recruit RNA molecules. Overall, our work uncovers an intrinsic correlation between the LLPS activity of KIF1C and its role in mRNA positioning. In addition, the LLPS activity of KIF1C's tail represents a new mode of motor-cargo interaction that extends our current understanding of cytoskeletal motor proteins.
Asunto(s)
Cinesinas , ARN Mensajero , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/química , Cinesinas/metabolismo , Cinesinas/genética , Separación de Fases , ARN Mensajero/metabolismo , ARN Mensajero/genéticaRESUMEN
Neurotropic alphaherpesviruses, including herpes simplex virus type 1 (HSV-1), recruit microtubule motor proteins to invade cells. The incoming viral particle traffics to nuclei in a two-step process. First, the particle uses the dynein-dynactin motor to sustain transport to the centrosome. In neurons, this step is responsible for long-distance retrograde axonal transport and is an important component of the neuroinvasive property shared by these viruses. Second, a kinesin-dependent mechanism redirects the particle from the centrosome to the nucleus. We have reported that the kinesin motor used during the second step of invasion is assimilated into nascent virions during the previous round of infection. Here, we report that the HSV-1 pUL37 tegument protein suppresses the assimilated kinesin-1 motor during retrograde axonal transport. Region 2 (R2) of pUL37 was required for suppression and functioned independently of the autoinhibitory mechanism native to kinesin-1. Furthermore, the motor domain and proximal coiled coil of kinesin-1 were sufficient for HSV-1 assimilation, pUL37 suppression, and nuclear trafficking. pUL37 localized to the centrosome, the site of assimilated kinesin-1 activation during infection, when expressed in cells in the absence of other viral proteins; however, pUL37 did not suppress kinesin-1 in this context. These results indicate that the pUL37 tegument protein spatially and temporally regulates kinesin-1 via the amino-terminal motor region in the context of the incoming viral particle.
Asunto(s)
Herpesvirus Humano 1 , Cinesinas , Proteínas Estructurales Virales , Cinesinas/metabolismo , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 1/metabolismo , Humanos , Animales , Transporte Axonal/fisiología , Chlorocebus aethiops , Centrosoma/metabolismo , Neuronas/metabolismo , Neuronas/virología , Células Vero , Núcleo Celular/metabolismo , Núcleo Celular/virologíaRESUMEN
Microtubules are critical for a variety of important functions in eukaryotic cells. During intracellular trafficking, molecular motor proteins of the kinesin superfamily drive the transport of cellular cargoes by stepping processively along the microtubule surface. Traditionally, the microtubule has been viewed as simply a track for kinesin motility. New work is challenging this classic view by showing that kinesin-1 and kinesin-4 proteins can induce conformational changes in tubulin subunits while they are stepping. These conformational changes appear to propagate along the microtubule such that the kinesins can work allosterically through the lattice to influence other proteins on the same track. Thus, the microtubule is a plastic medium through which motors and other microtubule-associated proteins (MAPs) can communicate. Furthermore, stepping kinesin-1 can damage the microtubule lattice. Damage can be repaired by the incorporation of new tubulin subunits, but too much damage leads to microtubule breakage and disassembly. Thus, the addition and loss of tubulin subunits are not restricted to the ends of the microtubule filament but rather, the lattice itself undergoes continuous repair and remodeling. This work leads to a new understanding of how kinesin motors and their microtubule tracks engage in allosteric interactions that are critical for normal cell physiology.
Asunto(s)
Cinesinas , Tubulina (Proteína) , Microtúbulos , Proteínas Asociadas a Microtúbulos , CitoesqueletoRESUMEN
Most motile cilia have a stereotyped structure of nine microtubule outer doublets and a single central pair of microtubules. The central pair of microtubules are surrounded by a set of proteins, termed the central pair apparatus. A specific kinesin, Klp1 projects from the central pair and contributes to ciliary motility in Chlamydomonas. The vertebrate ortholog, Kif9, is required for beating in mouse sperm flagella, but the mechanism of Kif9/Klp1 function remains poorly defined. Here, using Xenopus epidermal multiciliated cells, we show that Kif9 is necessary for ciliary motility and the proper distal localization of not only central pair proteins, but also radial spokes and dynein arms. In addition, single-molecule assays in vitro reveal that Xenopus Kif9 is a long-range processive motor, although it does not mediate long-range movement in ciliary axonemes in vivo. Together, our data suggest that Kif9 is integral for ciliary beating and is necessary for proper axonemal distal end integrity.
Asunto(s)
Axonema , Cilios , Cinesinas , Animales , Axonema/metabolismo , Cilios/metabolismo , Dineínas/metabolismo , Flagelos/metabolismo , Cinesinas/genética , Microtúbulos/metabolismo , XenopusRESUMEN
Microtubule (MT)-dependent transport is a critical means of intracellular movement of cellular cargo by kinesin and dynein motors. MT-dependent transport is tightly regulated by cellular MT-associated proteins (MAPs) that directly bind to MTs and either promote or impede motor protein function. Viruses have been widely shown to usurp MT-dependent transport to facilitate their virion movement to sites of replication and/or for exit from the cell. However, it is unclear if viruses also negatively regulate MT-dependent transport. Using single-molecule motility and cellular transport assays, we show that the vaccinia virus (VV)-encoded MAP, A51R, inhibits kinesin-1-dependent transport along MTs in vitro and in cells. This inhibition is selective as the function of kinesin-3 is largely unaffected by VV A51R. Interestingly, we show that A51R promotes the perinuclear accumulation of cellular cargo transported by kinesin-1 such as lysosomes and mitochondria during infection. Moreover, A51R also regulates the release of specialized VV virions that exit the cell using kinesin-1-dependent movement. Using a fluorescently tagged rigor mutant of kinesin-1, we show that these motors accumulate on A51R-stabilized MTs, suggesting these stabilized MTs may form a "kinesin-1 sink" to regulate MT-dependent transport in the cell. Collectively, our findings uncover a new mechanism by which viruses regulate host cytoskeletal processes.
Asunto(s)
Cinesinas , Microtúbulos , Virus Vaccinia , Cinesinas/metabolismo , Cinesinas/genética , Microtúbulos/metabolismo , Humanos , Virus Vaccinia/metabolismo , Virus Vaccinia/fisiología , Virus Vaccinia/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Transporte Biológico , Células HeLaRESUMEN
The kinesin-4 member KIF7 plays critical roles in Hedgehog signaling in vertebrate cells. KIF7 is an atypical kinesin as it binds to microtubules but is immotile. We demonstrate that, like conventional kinesins, KIF7 is regulated by auto-inhibition, as the full-length protein is inactive for microtubule binding in cells. We identify a segment, the inhibitory coiled coil (inhCC), that is required for auto-inhibition of KIF7, whereas the adjacent regulatory coiled coil (rCC) that contributes to auto-inhibition of the motile kinesin-4s KIF21A and KIF21B is not sufficient for KIF7 auto-inhibition. Disease-associated mutations in the inhCC relieve auto-inhibition and result in strong microtubule binding. Surprisingly, uninhibited KIF7 proteins did not bind preferentially to or track the plus ends of growing microtubules in cells, as suggested by previous in vitro work, but rather bound along cytosolic and axonemal microtubules. Localization to the tip of the primary cilium also required the inhCC, and could be increased by disease-associated mutations regardless of the auto-inhibition state of the protein. These findings suggest that loss of KIF7 auto-inhibition and/or altered cilium tip localization can contribute to the pathogenesis of human disease.
Asunto(s)
Cilios , Cinesinas , Axonema , Proteínas Hedgehog , Humanos , Cinesinas/genética , MicrotúbulosRESUMEN
Post-translational modifications to tubulin are important for many microtubule-based functions inside cells. It was recently shown that methylation of tubulin by the histone methyltransferase SETD2 occurs on mitotic spindle microtubules during cell division, with its absence resulting in mitotic defects. However, the catalytic mechanism of methyl addition to tubulin is unclear. We used a truncated version of human wild type SETD2 (tSETD2) containing the catalytic SET and C-terminal Set2-Rpb1-interacting (SRI) domains to investigate the biochemical mechanism of tubulin methylation. We found that recombinant tSETD2 had a higher activity toward tubulin dimers than polymerized microtubules. Using recombinant single-isotype tubulin, we demonstrated that methylation was restricted to lysine 40 of α-tubulin. We then introduced pathogenic mutations into tSETD2 to probe the recognition of histone and tubulin substrates. A mutation in the catalytic domain (R1625C) allowed tSETD2 to bind to tubulin but not methylate it, whereas a mutation in the SRI domain (R2510H) caused loss of both tubulin binding and methylation. Further investigation of the role of the SRI domain in substrate binding found that mutations within this region had differential effects on the ability of tSETD2 to bind to tubulin versus the binding partner RNA polymerase II for methylating histones in vivo, suggesting distinct mechanisms for tubulin and histone methylation by SETD2. Finally, we found that substrate recognition also requires the negatively charged C-terminal tail of α-tubulin. Together, this study provides a framework for understanding how SETD2 serves as a dual methyltransferase for both histone and tubulin methylation.
Asunto(s)
Dominio Catalítico , N-Metiltransferasa de Histona-Lisina/química , Tubulina (Proteína)/metabolismo , Animales , Células COS , Chlorocebus aethiops , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Humanos , Metilación , Mutación , Unión Proteica , Procesamiento Proteico-PostraduccionalRESUMEN
Gene discovery efforts in autism spectrum disorder have identified heterozygous defects in chromatin remodeller genes, the 'readers, writers and erasers' of methyl marks on chromatin, as major contributors to this disease. Despite this advance, a convergent aetiology between these defects and aberrant chromatin architecture or gene expression has remained elusive. Recently, data have begun to emerge that chromatin remodellers also function directly on the cytoskeleton. Strongly associated with autism spectrum disorder, the SETD2 histone methyltransferase for example, has now been shown to directly methylate microtubules of the mitotic spindle. However, whether microtubule methylation occurs in post-mitotic cells, for example on the neuronal cytoskeleton, is not known. We found the SETD2 α-tubulin lysine 40 trimethyl mark occurs on microtubules in the brain and in primary neurons in culture, and that the SETD2 C-terminal SRI domain is required for binding and methylation of α-tubulin. A CRISPR knock-in of a pathogenic SRI domain mutation (Setd2SRI) that disables microtubule methylation revealed at least one wild-type allele was required in mice for survival, and while viable, heterozygous Setd2SRI/wtmice exhibited an anxiety-like phenotype. Finally, whereas RNA-sequencing (RNA-seq) and chromatin immunoprecipitation-sequencing (ChIP-seq) showed no concomitant changes in chromatin methylation or gene expression in Setd2SRI/wtmice, primary neurons exhibited structural deficits in axon length and dendritic arborization. These data provide the first demonstration that microtubules of neurons are methylated, and reveals a heterozygous chromatin remodeller defect that specifically disables microtubule methylation is sufficient to drive an autism-associated phenotype.
Asunto(s)
Ansiedad/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo , Animales , Encéfalo/metabolismo , Histonas/metabolismo , Metilación , Ratones , FenotipoRESUMEN
Kinesin motor proteins that drive intracellular transport share an overall architecture of two motor domain-containing subunits that dimerize through a coiled-coil stalk. Dimerization allows kinesins to be processive motors, taking many steps along the microtubule track before detaching. However, whether dimerization is required for intracellular transport remains unknown. Here, we address this issue using a combination of in vitro and cellular assays to directly compare dimeric motors across the kinesin-1, -2, and -3 families to their minimal monomeric forms. Surprisingly, we find that monomeric motors are able to work in teams to drive peroxisome dispersion in cells. However, peroxisome transport requires minimal force output, and we find that most monomeric motors are unable to disperse the Golgi complex, a high-load cargo. Strikingly, monomeric versions of the kinesin-2 family motors KIF3A and KIF3B are able to drive Golgi dispersion in cells, and teams of monomeric KIF3B motors can generate over 8 pN of force in an optical trap. We find that intracellular transport and force output by monomeric motors, but not dimeric motors, are significantly decreased by the addition of longer and more flexible motor-to-cargo linkers. Together, these results suggest that dimerization of kinesin motors is not required for intracellular transport; however, it enables motor-to-motor coordination and high force generation regardless of motor-to-cargo distance. Dimerization of kinesin motors is thus critical for cellular events that require an ability to generate or withstand high forces.
Asunto(s)
Cinesinas/metabolismo , Animales , Transporte Biológico , Células COS , Chlorocebus aethiops , Dimerización , Aparato de Golgi/metabolismo , Peroxisomas/metabolismoRESUMEN
Kinesins are a family of molecular motors that use the energy of ATP hydrolysis to move along the surface of, or destabilize, microtubule filaments. Much progress has been made in understanding the mechanics and functions of the kinesin motors that play important parts in cell division, cell motility, intracellular trafficking and ciliary function. How kinesins are regulated in cells to ensure the temporal and spatial fidelity of their microtubule-based activities is less well understood. Recent work has revealed molecular mechanisms that control kinesin autoinhibition and subsequent activation, binding to cargos and microtubule tracks, and localization at specific sites of action.
Asunto(s)
Cinesinas/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Animales , HumanosRESUMEN
Defects in the motor domain of kinesin family member 1A (KIF1A), a neuron-specific ATP-dependent anterograde axonal transporter of synaptic cargo, are well-recognized to cause a spectrum of neurological conditions, commonly known as KIF1A-associated neurological disorders (KAND). Here, we report one mutation-negative female with classic Rett syndrome (RTT) harboring a de novo heterozygous novel variant [NP_001230937.1:p.(Asp248Glu)] in the highly conserved motor domain of KIF1A. In addition, three individuals with severe neurodevelopmental disorder along with clinical features overlapping with KAND are also reported carrying de novo heterozygous novel [NP_001230937.1:p.(Cys92Arg) and p.(Pro305Leu)] or previously reported [NP_001230937.1:p.(Thr99Met)] variants in KIF1A. In silico tools predicted these variants to be likely pathogenic, and 3D molecular modeling predicted defective ATP hydrolysis and/or microtubule binding. Using the neurite tip accumulation assay, we demonstrated that all novel KIF1A variants significantly reduced the ability of the motor domain of KIF1A to accumulate along the neurite lengths of differentiated SH-SY5Y cells. In vitro microtubule gliding assays showed significantly reduced velocities for the variant p.(Asp248Glu) and reduced microtubule binding for the p.(Cys92Arg) and p.(Pro305Leu) variants, suggesting a decreased ability of KIF1A to move along microtubules. Thus, this study further expanded the phenotypic characteristics of KAND individuals with pathogenic variants in the KIF1A motor domain to include clinical features commonly seen in RTT individuals.
Asunto(s)
Cinesinas , Mutación Missense , Familia , Femenino , Heterocigoto , Humanos , Cinesinas/genética , Mutación , Trastornos del Neurodesarrollo/genética , Síndrome de Rett/genéticaRESUMEN
The kinesin-3 family member KIF1A plays a critical role in site-specific neuronal cargo delivery during axonal transport. KIF1A cargo is mislocalized in many neurodegenerative diseases, indicating that KIF1A's highly efficient, superprocessive motility along axonal microtubules needs to be tightly regulated. One potential regulatory mechanism may be through posttranslational modifications (PTMs) of axonal microtubules. These PTMs often occur on the C-terminal tails of the microtubule tracks, act as molecular "traffic signals" helping to direct kinesin motor cargo delivery, and include C-terminal tail polyglutamylation important for KIF1A cargo transport. KIF1A initially interacts with microtubule C-terminal tails through its K-loop, a positively charged surface loop of the KIF1A motor domain. However, the role of the K-loop in KIF1A motility and response to perturbations in C-terminal tail polyglutamylation is underexplored. Using single-molecule imaging, we present evidence that KIF1A pauses on different microtubule lattice structures, linking multiple processive segments together and contributing to KIF1A's characteristic superprocessive run length. Furthermore, modifications of the KIF1A K-loop or tubulin C-terminal tail polyglutamylation reduced KIF1A pausing and overall run length. These results suggest a new mechanism to regulate KIF1A motility via pauses mediated by K-loop/polyglutamylated C-terminal tail interactions, providing further insight into KIF1A's role in axonal transport.
Asunto(s)
Transporte Axonal , Axones/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Bovinos , Células HeLa , Humanos , Cinesinas/genética , Microtúbulos/genética , Péptidos/genética , Dominios Proteicos , Estructura Secundaria de ProteínaRESUMEN
Intracellular cargo transport by kinesin family motor proteins is crucial for many cellular processes, particularly vesicle transport in axons and dendrites. In a number of cases, the transport of specific cargo is carried out by two classes of kinesins that move at different speeds and thus compete during transport. Despite advances in single-molecule characterization and modeling approaches, many questions remain regarding the effect of intermotor tension on motor attachment/reattachment rates during cooperative multimotor transport. To understand the motor dynamics underlying multimotor transport, we analyzed the complexes of kinesin-1 and kinesin-3 motors attached through protein scaffolds moving on immobilized microtubules in vitro. To interpret the observed behavior, simulations were carried out using a model that incorporated motor stepping, attachment/detachment rates, and intermotor force generation. In single-molecule experiments, isolated kinesin-3 motors moved twofold faster and had threefold higher landing rates than kinesin-1. When the positively charged loop 12 of kinesin-3 was swapped with that of kinesin-1, the landing rates reversed, indicating that this "K-loop" is a key determinant of the motor reattachment rate. In contrast, swapping loop 12 had negligible effects on motor velocities. Two-motor complexes containing one kinesin-1 and one kinesin-3 moved at different speeds depending on the identity of their loop 12, indicating the importance of the motor reattachment rate on the cotransport speed. Simulations of these loop-swapped motors using experimentally derived motor parameters were able to reproduce the experimental results and identify best fit parameters for the motor reattachment rates for this geometry. Simulation results also supported previous work, suggesting that kinesin-3 microtubule detachment is very sensitive to load. Overall, the simulations demonstrate that the transport behavior of cargo carried by pairs of kinesin-1 and -3 motors are determined by three properties that differ between these two families: the unloaded velocity, the load dependence of detachment, and the motor reattachment rate.
Asunto(s)
Cinesinas/metabolismo , Animales , Transporte Biológico , Células COS , Chlorocebus aethiops , Modelos BiológicosRESUMEN
Centralspindlin, a complex of the kinesin-6-family member MKLP1 and MgcRacGAP (also known as Kif23 and Racgap1, respectively), is required for cytokinesis and cell-cell junctions. During anaphase, Centralspindlin accumulates at overlapping central spindle microtubules and directs contractile ring formation by recruiting the GEF Ect2 to the cell equator to activate RhoA. We found that MgcRacGAP localized to the plus ends of equatorial astral microtubules during cytokinesis in Xenopus laevis embryos. How MgcRacGAP is stabilized at microtubule plus ends is unknown. We identified an SxIP motif in X. laevis MgcRacGAP that is conserved with other proteins that bind to EB1 (also known as Mapre1), a microtubule plus-end tracking protein. Mutation of the SxIP motif in MgcRacGAP resulted in loss of MgcRacGAP tracking with EB3 (also known as Mapre3) on growing microtubule plus ends, abnormal astral microtubule organization, redistribution of MgcRacGAP from the contractile ring to the polar cell cortex, and mislocalization of RhoA and its downstream targets, which together contributed to severe cytokinesis defects. Furthermore, mutation of the MgcRacGAP SxIP motif perturbed adherens junctions. We propose that the MgcRacGAP SxIP motif is functionally important both for its role in regulating adherens junction structure during interphase and for regulating Rho GTPase activity during cytokinesis.
Asunto(s)
Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/metabolismo , Microtúbulos/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Actinas/metabolismo , Uniones Adherentes/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Citocinesis , Modelos Biológicos , Mutación/genética , Relación Estructura-Actividad , Imagen de Lapso de Tiempo , Xenopus laevis/embriología , Proteína de Unión al GTP rhoA/metabolismoRESUMEN
During entry, polyomavirus (PyV) is endocytosed and sorts to the endoplasmic reticulum (ER), where it penetrates the ER membrane to reach the cytosol. From the cytosol, the virus moves to the nucleus to cause infection. How PyV is transported from the cytosol into the nucleus, a crucial infection step, is unclear. We found that upon reaching the cytosol, the archetypal PyV simian virus 40 (SV40) recruits the cytoplasmic dynein motor, which disassembles the viral particle. This reaction enables the resulting disassembled virus to enter the nucleus to promote infection. Our findings reveal how a cytosolic motor can be hijacked to impart conformational changes to a viral particle, a process essential for successful infection.IMPORTANCE How a nonenveloped virus successfully traffics from the cell surface to the nucleus to cause infection remains enigmatic in many instances. In the case of the nonenveloped PyV, the viral particle is sorted from the plasma membrane to the ER and then the cytosol, from which it enters the nucleus to promote infection. The molecular mechanism by which PyV reaches the nucleus from the cytosol is not entirely clear. Here we demonstrate that the prototype PyV SV40 recruits dynein upon reaching the cytosol. Importantly, this cellular motor disassembles the viral particle during cytosol-to-nucleus transport to cause infection.
Asunto(s)
Citosol/virología , Dineínas/metabolismo , Mapeo de Interacción de Proteínas/métodos , Virus 40 de los Simios/patogenicidad , Animales , Células COS , Línea Celular , Núcleo Celular/virología , Chlorocebus aethiops , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/virología , Virus 40 de los Simios/química , Virus 40 de los Simios/fisiología , Internalización del VirusRESUMEN
GLI transport to the primary cilium and nucleus is required for proper Hedgehog (HH) signaling; however, the mechanisms that mediate these trafficking events are poorly understood. Kinesin-2 motor proteins regulate ciliary transport of cargo, yet their role in GLI protein function remains unexplored. To examine a role for the heterotrimeric KIF3A-KIF3B-KAP3 kinesin-2 motor complex in regulating GLI activity, we performed a series of structure-function analyses using biochemical, cell signaling and in vivo approaches that define novel specific interactions between GLI proteins and two components of this complex, KAP3 and KIF3A. We find that all three mammalian GLI proteins interact with KAP3 and we map specific interaction sites in both proteins. Furthermore, we find that GLI proteins interact selectively with KIF3A, but not KIF3B, and that GLI interacts synergistically with KAP3 and KIF3A. Using a combination of cell signaling assays and chicken in ovo electroporation, we demonstrate that KAP3 interactions restrict GLI activator function but not GLI repressor function. These data suggest that GLI interactions with KIF3A-KIF3B-KAP3 complexes are essential for proper GLI transcriptional activity.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Citoesqueleto/metabolismo , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Complejos Multiproteicos/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células COS , Pollos , Chlorocebus aethiops , Proteínas del Citoesqueleto/genética , Humanos , Cinesinas/genética , Proteínas Asociadas a Microtúbulos/genética , Complejos Multiproteicos/genética , Factores de Transcripción/genética , Transcripción Genética/fisiología , Proteína con Dedos de Zinc GLI1RESUMEN
Cilia and flagella play important roles in cell motility and cell signaling. These functions require that the cilium establishes and maintains a unique lipid and protein composition. Recent work indicates that a specialized region at the base of the cilium, the transition zone, serves as both a barrier to entry and a gate for passage of select components. For at least some cytosolic proteins, the barrier and gate functions are provided by a ciliary pore complex (CPC) that shares molecular and mechanistic properties with nuclear gating. Specifically, nucleoporins of the CPC limit the diffusional entry of cytosolic proteins in a size-dependent manner and enable the active transport of large molecules and complexes via targeting signals, importins, and the small G protein Ran. For membrane proteins, the septin protein SEPT2 is part of the barrier to entry whereas the gating function is carried out and/or regulated by proteins associated with ciliary diseases (ciliopathies) such as nephronophthisis, MeckelGruber syndrome and Joubert syndrome. Here, we discuss the evidence behind these models of ciliary gating as well as the similarities to and differences from nuclear gating.
Asunto(s)
Cilios/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Animales , Cilios/ultraestructura , Citosol/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de Complejo Poro Nuclear/ultraestructura , Transporte de ProteínasRESUMEN
The kinesin-3 family is one of the largest among the kinesin superfamily and its members play important roles in a wide range of cellular transport activities, yet the molecular mechanisms of kinesin-3 regulation and cargo transport are largely unknown. We performed a comprehensive analysis of mammalian kinesin-3 motors from three different subfamilies (KIF1, KIF13, and KIF16). Using Forster resonance energy transfer microscopy in live cells, we show for the first time to our knowledge that KIF16B motors undergo cargo-mediated dimerization. The molecular mechanisms that regulate the monomer-to-dimer transition center around the neck coil (NC) segment and its ability to undergo intramolecular interactions in the monomer state versus intermolecular interactions in the dimer state. Regulation of NC dimerization is unique to the kinesin-3 family and in the case of KIF13A and KIF13B requires the release of a proline-induced kink between the NC and subsequent coiled-coil 1 segments. We show that dimerization of kinesin-3 motors results in superprocessive motion, with average run lengths of â¼10 µm, and that this property is intrinsic to the dimeric kinesin-3 motor domain. This finding opens up studies on the mechanistic basis of motor processivity. Such high processivity has not been observed for any other motor protein and suggests that kinesin-3 motors are evolutionarily adapted to serve as the marathon runners of the cellular world.