Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Gut ; 71(1): 119-128, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33436496

RESUMEN

OBJECTIVE: Cancer stem cells are responsible for tumour spreading and relapse. Human epidermal growth factor receptor 2 (HER2) expression is a negative prognostic factor in colorectal cancer (CRC) and a potential target in tumours carrying the gene amplification. Our aim was to define the expression of HER2 in colorectal cancer stem cells (CR-CSCs) and its possible role as therapeutic target in CRC resistant to anti- epidermal growth factor receptor (EGFR) therapy. DESIGN: A collection of primary sphere cell cultures obtained from 60 CRC specimens was used to generate CR-CSC mouse avatars to preclinically validate therapeutic options. We also made use of the ChIP-seq analysis for transcriptional evaluation of HER2 activation and global RNA-seq to identify the mechanisms underlying therapy resistance. RESULTS: Here we show that in CD44v6-positive CR-CSCs, high HER2 expression levels are associated with an activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, which promotes the acetylation at the regulatory elements of the Erbb2 gene. HER2 targeting in combination with phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase kinase (MEK) inhibitors induces CR-CSC death and regression of tumour xenografts, including those carrying Kras and Pik3ca mutation. Requirement for the triple targeting is due to the presence of cancer-associated fibroblasts, which release cytokines able to confer CR-CSC resistance to PI3K/AKT inhibitors. In contrast, targeting of PI3K/AKT as monotherapy is sufficient to kill liver-disseminating CR-CSCs in a model of adjuvant therapy. CONCLUSIONS: While PI3K targeting kills liver-colonising CR-CSCs, the concomitant inhibition of PI3K, HER2 and MEK is required to induce regression of tumours resistant to anti-EGFR therapies. These data may provide a rationale for designing clinical trials in the adjuvant and metastatic setting.


Asunto(s)
Neoplasias Colorrectales/patología , Fosfatidilinositol 3-Quinasa/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Receptor ErbB-2/metabolismo , Animales , Antineoplásicos Inmunológicos/farmacología , Cetuximab/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Trastuzumab/farmacología , Células Tumorales Cultivadas
2.
BMC Cancer ; 18(1): 1176, 2018 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-30482160

RESUMEN

BACKGROUND: It has been proposed that mesenchymal stromal cells (MSCs) promote tumor progression by interacting with tumor cells and other stroma cells in the complex network of the tumor microenvironment. We characterized MSCs isolated and expanded from tumor tissues of pediatric patients diagnosed with neuroblastomas (NB-MSCs) to define interactions with the tumor microenvironment. METHODS: Specimens were obtained from 7 pediatric patients diagnosed with neuroblastoma (NB). Morphology, immunophenotype, differentiation capacity, proliferative growth, expression of stemness and neural differentiation markers were evaluated. Moreover, the ability of cells to modulate the immune response, i.e. inhibition of phytohemagglutinin (PHA) activated peripheral blood mononuclear cells (PBMCs) and natural killer (NK) cytotoxic function, was examined. Gene expression profiles, known to be related to tumor cell stemness, Wnt pathway activation, epithelial-mesenchymal transition (EMT) and tumor metastasis were also evaluated. Healthy donor bone marrow-derived MSCs (BM-MSC) were employed as controls. RESULTS: NB-MSCs presented the typical MSC morphology and phenotype. They showed a proliferative capacity superimposable to BM-MSCs. Stemness marker expression (Sox2, Nanog, Oct3/4) was comparable to BM-MSCs. NB-MSC in vitro osteogenic and chondrogenic differentiation was similar to BM-MSCs, but NB-MSCs lacked adipogenic differentiation capacity. NB-MSCs reached senescence phases at a median passage of P7 (range, P5-P13). NB-MSCs exhibited greater immunosuppressive capacity on activated T lymphocytes at a 1:2 (MSC: PBMC) ratio compared with BM-MSCs (p = 0.018). NK cytotoxic activity was not influenced by co-culture, either with BM-MSCs or NB-MSCs. Flow-cytometry cell cycle analysis showed that NB-MSCs had an increased number of cells in the G0-G1 phase compared to BM-MSCs. Transcriptomic profiling results indicated that NB-MSCs were enriched with EMT genes compared to BM-MSCs. CONCLUSIONS: We characterized the biological features, the immunomodulatory capacity and the gene expression profile of NB-MSCs. The NB-MSC gene expression profile and their functional properties suggest a potential role in promoting tumor escape, invasiveness and metastatic traits of NB cancer cells. A better understanding of the complex mechanisms underlying the interactions between NB cells and NB-derived MSCs should shed new light on potential novel therapeutic approaches.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Células Madre Mesenquimatosas/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patología , Microambiente Tumoral , Biomarcadores de Tumor , Células de la Médula Ósea/metabolismo , Fibroblastos Asociados al Cáncer/patología , Ciclo Celular , Diferenciación Celular/genética , Separación Celular/métodos , Células Cultivadas , Preescolar , Técnicas de Cocultivo , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Inmunofenotipificación/métodos , Lactante , Masculino , Mutación , Neuroblastoma/epidemiología , Neuroblastoma/terapia , Vigilancia de la Población , Sistema de Registros , Transducción de Señal , Microambiente Tumoral/genética
3.
STAR Protoc ; 5(3): 103263, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39128010

RESUMEN

Thyroid carcinoma represents the first malignancy among the endocrine organs. Investigating the cellular hierarchy and the mechanisms underlying the initiation of thyroid carcinoma is crucial in thyroid cancer research. Here, we present a protocol for deriving thyroid cell lineage from human embryonic stem cells. We also describe steps for engineering thyroid progenitor cells utilizing CRISPR-Cas9 technology, which can be used to perform in vivo studies, thus facilitating the development of representative thyroid tumorigenesis models. For complete details on the use and execution of this protocol, please refer to Veschi et al.1.


Asunto(s)
Sistemas CRISPR-Cas , Linaje de la Célula , Edición Génica , Glándula Tiroides , Neoplasias de la Tiroides , Humanos , Sistemas CRISPR-Cas/genética , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Edición Génica/métodos , Glándula Tiroides/patología , Glándula Tiroides/citología , Glándula Tiroides/metabolismo , Linaje de la Célula/genética , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología , Progresión de la Enfermedad
4.
Mol Carcinog ; 52(7): 526-34, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22389255

RESUMEN

Reactivation of the HMGA1 protoncogene is very frequent in human cancer, but still very little is known on the molecular mechanisms leading to this event. Prompted by the finding of putative E2F binding sites in the human HMGA1 promoter and by the frequent deregulation of the RB/E2F1 pathway in human carcinogenesis, we investigated whether E2F1 might contribute to the regulation of HMGA1 gene expression. Here we report that E2F1 induces HMGA1 by interacting with a 193 bp region of the HMGA1 promoter containing an E2F binding site surrounded by three putative Sp1 binding sites. Both gain and loss of function experiments indicate that Sp1 functionally interacts with E2F1 to promote HMGA1 expression. However, while Sp1 constitutively binds HMGA1 promoter, it is the balance between different E2F family members that tunes the levels of HMGA1 expression between quiescence and proliferation. Finally, we found increased HMGA1 expression in pituitary and thyroid tumors developed in Rb(+/-) mice, supporting the hypothesis that E2F1 is a novel important regulator of HMGA1 expression and that deregulation of the RB/E2F1 path might significantly contribute to HMGA1 deregulation in cancer.


Asunto(s)
Factor de Transcripción E2F1/metabolismo , Proteína HMGA1a/genética , Neoplasias Hipofisarias/metabolismo , Factor de Transcripción Sp1/metabolismo , Neoplasias de la Tiroides/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Western Blotting , Inmunoprecipitación de Cromatina , Factor de Transcripción E2F1/genética , Proteína HMGA1a/metabolismo , Humanos , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación/genética , Neoplasias Hipofisarias/genética , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína de Retinoblastoma/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción Sp1/genética , Neoplasias de la Tiroides/genética , Activación Transcripcional
5.
Front Mol Med ; 3: 1120090, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-39086678

RESUMEN

Cancer stem cells (CSCs) represent the most aggressive subpopulation present in the tumor bulk retaining invasive capabilities, metastatic potential and high expression levels of drug efflux pumps responsible for therapy resistance. Cancer is still an incurable disease due to the inefficacy of standard regimens that spare this subpopulation. Selective targeting of CSCs is still an unmet need in cancer research field. Aberrant epigenetic reprogramming promotes the initiation and maintenance of CSCs, which are able to escape the immune system defense. Promising therapeutic approaches able to induce the selective inhibition of this stem-like small subset include immunotherapy alone or in combination with epigenetic compounds. These strategies are based on the specific expression of epitopes and/or epigenetic alterations present only in the CSC and not in the other cancer cells or normal cells. Thus, the combined approach utilizing CAR-T immunotherapy along with epigenetic probes may overcome the barriers of treatment ineffectiveness towards a more precision medicine approach in patients with known specific alterations of CSCs. In this perspective article we will shed new lights on the future applications of epi-immunotherapy in tumors enriched in CSCs, along with its potential side-effects, limitations and the development of therapy resistance.

6.
Nat Commun ; 14(1): 1351, 2023 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-36906579

RESUMEN

Thyroid carcinoma (TC) is the most common malignancy of endocrine organs. The cell subpopulation in the lineage hierarchy that serves as cell of origin for the different TC histotypes is unknown. Human embryonic stem cells (hESCs) with appropriate in vitro stimulation undergo sequential differentiation into thyroid progenitor cells (TPCs-day 22), which maturate into thyrocytes (day 30). Here, we create follicular cell-derived TCs of all the different histotypes based on specific genomic alterations delivered by CRISPR-Cas9 in hESC-derived TPCs. Specifically, TPCs harboring BRAFV600E or NRASQ61R mutations generate papillary or follicular TC, respectively, whereas addition of TP53R248Q generate undifferentiated TCs. Of note, TCs arise by engineering TPCs, whereas mature thyrocytes have a very limited tumorigenic capacity. The same mutations result in teratocarcinomas when delivered in early differentiating hESCs. Tissue Inhibitor of Metalloproteinase 1 (TIMP1)/Matrix metallopeptidase 9 (MMP9)/Cluster of differentiation 44 (CD44) ternary complex, in cooperation with Kisspeptin receptor (KISS1R), is involved in TC initiation and progression. Increasing radioiodine uptake, KISS1R and TIMP1 targeting may represent a therapeutic adjuvant option for undifferentiated TCs.


Asunto(s)
Radioisótopos de Yodo , Neoplasias de la Tiroides , Humanos , Receptores de Kisspeptina-1/genética , Inhibidor Tisular de Metaloproteinasa-1/genética , Neoplasias de la Tiroides/genética , Células Madre Embrionarias , Proteínas Proto-Oncogénicas B-raf/genética , Mutación
7.
J Clin Med ; 11(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36498571

RESUMEN

In a scenario where eco-sustainability and a reduction in chemotherapeutic drug waste are certainly a prerogative to safeguard the biosphere, the use of natural products (NPs) represents an alternative therapeutic approach to counteract cancer diseases. The presence of a heterogeneous cancer stem cell (CSC) population within a tumor bulk is related to disease recurrence and therapy resistance. For this reason, CSC targeting presents a promising strategy for hampering cancer recurrence. Increasing evidence shows that NPs can inhibit crucial signaling pathways involved in the maintenance of CSC stemness and sensitize CSCs to standard chemotherapeutic treatments. Moreover, their limited toxicity and low costs for large-scale production could accelerate the use of NPs in clinical settings. In this review, we will summarize the most relevant studies regarding the effects of NPs derived from major natural sources, e.g., food, botanical, and marine species, on CSCs, elucidating their use in pre-clinical and clinical studies.

8.
Biomolecules ; 12(5)2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-35625629

RESUMEN

The tumor microenvironment (TME) plays a key role in promoting and sustaining cancer growth. Adipose tissue (AT), due to its anatomical distribution, is a prevalent component of TME, and contributes to cancer development and progression. Cancer-associated adipocytes (CAAs), reprogrammed by cancer stem cells (CSCs), drive cancer progression by releasing metabolites and inflammatory adipokines. In this review, we highlight the mechanisms underlying the bidirectional crosstalk among CAAs, CSCs, and stromal cells. Moreover, we focus on the recent advances in the therapeutic targeting of adipocyte-released factors as an innovative strategy to counteract cancer progression.


Asunto(s)
Neoplasias , Microambiente Tumoral , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Humanos , Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo
9.
Front Mol Med ; 2: 1055028, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-39086964

RESUMEN

Chimeric antigen receptor (CAR)-T cell therapy represents one of the most innovative immunotherapy approaches. The encouraging results achieved by CAR-T cell therapy in hematological disorders paved the way for the employment of CAR engineered T cells in different types of solid tumors. This adoptive cell therapy represents a selective and efficacious approach to eradicate tumors through the recognition of tumor-associated antigens (TAAs). Binding of engineered CAR-T cells to TAAs provokes the release of several cytokines, granzyme, and perforin that ultimately lead to cancer cells elimination and patient's immune system boosting. Within the tumor mass a subpopulation of cancer cells, known as cancer stem cells (CSCs), plays a crucial role in drug resistance, tumor progression, and metastasis. CAR-T cell therapy has indeed been exploited to target CSCs specific antigens as an effective strategy for tumor heterogeneity disruption. Nevertheless, a barrier to the efficacy of CAR-T cell-based therapy is represented by the poor persistence of CAR-T cells into the hostile milieu of the CSCs niche, the development of resistance to single targeting antigen, changes in tumor and T cell metabolism, and the onset of severe adverse effects. CSCs resistance is corroborated by the presence of an immunosuppressive tumor microenvironment (TME), which includes stromal cells, cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and immune cells. The relationship between TME components and CSCs dampens the efficacy of CAR-T cell therapy. To overcome this challenge, the double strategy based on the use of CAR-T cell therapy in combination with chemotherapy could be crucial to evade immunosuppressive TME. Here, we summarize challenges and limitations of CAR-T cell therapy targeting CSCs, with particular emphasis on the role of TME and T cell metabolic demands.

10.
Cancers (Basel) ; 14(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35158939

RESUMEN

Despite advances in the curative approach, the survival rate of advanced colorectal cancer (CRC) patients is still poor, which is likely due to the emergence of cancer cell clones resistant to the available therapeutic options. We have already shown that CD44v6-positive CRC stem cells (CR-CSCs) are refractory toward standard anti-tumor therapeutic agents due to the activation of the PI3K pathway together with high HER2 expression levels. Tumor microenvironmental cytokines confer resistance to CR-CSCs against HER2/PI3K targeting by enhancing activation of the MAPK pathway. Here, we show that the CSC compartment, spared by BRAF inhibitor-based targeted therapy, is associated with increased expression levels of CD44v6 and Myc and retains boosted clonogenic activity along with residual tumorigenic potential. Inhibition of Myc transcription, downstream of the MAPK cascade components, and PI3K pathway activity was able to overcome the protective effects of microenvironmental cytokines, affecting the survival and the clonogenic activity of CR-CSCs, regardless of their mutational background. Likewise, the double targeting induced stabilization of mouse tumor avatars. Altogether, these data outline the rationale for dual kinase targeting of CR-CSCs to prevent their adaptive response, which would lead to disease progression.

11.
Oncogene ; 41(15): 2196-2209, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35217791

RESUMEN

Breast cancer (BC) is the second cause of cancer-related deceases in the worldwide female population. Despite the successful treatment advances, 25% of BC develops resistance to current therapeutic regimens, thereby remaining a major hurdle for patient management. Current therapies, targeting the molecular events underpinning the adaptive resistance, still require effort to improve BC treatment. Using BC sphere cells (BCSphCs) as a model, here we showed that BC stem-like cells express high levels of Myc, which requires the presence of the multifunctional DNA/RNA binding protein Sam68 for the DNA-damage repair. Analysis of a cohort of BC patients displayed that Sam68 is an independent negative factor correlated with the progression of the disease. Genetic inhibition of Sam68 caused a defect in PARP-induced PAR chain synthesis upon DNA-damaging insults, resulting in cell death of TNBC cells. In contrast, BC stem-like cells were able to survive due to an upregulation of Rad51. Importantly, the inhibition of Rad51 showed synthetic lethal effect with the silencing of Sam68, hampering the cell viability of patient-derived BCSphCs and stabilizing the growth of tumor xenografts, including those TNBC carrying BRCA mutation. Moreover, the analysis of Myc, Sam68 and Rad51 expression demarcated a signature of a poor outcome in a large cohort of BC patients. Thus, our findings suggest the importance of targeting Sam68-PARP1 axis and Rad51 as potential therapeutic candidates to counteract the expansion of BC cells with an aggressive phenotype.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neoplasias de la Mama , Proteínas de Unión al ADN , Proteínas de Unión al ARN , Recombinasa Rad51 , Neoplasias de la Mama Triple Negativas , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Humanos , Células Madre Neoplásicas/patología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Neoplasias de la Mama Triple Negativas/patología
12.
Genes (Basel) ; 12(10)2021 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-34680897

RESUMEN

BACKGROUND: Rectal cancer (RC) is one of the most commonly diagnosed and particularly challenging tumours to treat due to its location in the pelvis and close proximity to critical genitourinary organs. Radiotherapy (RT) is recognised as a key component of therapeutic strategy to treat RC, promoting the downsizing and downstaging of large RCs in neoadjuvant settings, although its therapeutic effect is limited due to radioresistance. Evidence from experimental and clinical studies indicates that the likelihood of achieving local tumour control by RT depends on the complete eradication of cancer stem cells (CSC), a minority subset of tumour cells with stemness properties. METHODS: A systematic literature review was conducted by querying two scientific databases (Pubmed and Scopus). The search was restricted to papers published from 2009 to 2021. RESULTS: After assessing the quality and the risk of bias, a total of 11 studies were selected as they mainly focused on biomarkers predictive of RT-response in CSCs isolated from patients affected by RC. Specifically these studies showed that elevated levels of CD133, CD44, ALDH1, Lgr5 and G9a are associated with RT-resistance and poor prognosis. CONCLUSIONS: This review aimed to provide an overview of the current scenario of in vitro and in vivo studies evaluating the biomarkers predictive of RT-response in CSCs derived from RC patients.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Células Madre Neoplásicas/metabolismo , Neoplasias del Recto/radioterapia , Humanos , Neoplasias del Recto/metabolismo , Resultado del Tratamiento
13.
Front Oncol ; 11: 702642, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34354950

RESUMEN

Despite the recent advances in cancer patient management and in the development of targeted therapies, systemic chemotherapy is currently used as a first-line treatment for many cancer types. After an initial partial response, patients become refractory to standard therapy fostering rapid tumor progression. Compelling evidence highlights that the resistance to chemotherapeutic regimens is a peculiarity of a subpopulation of cancer cells within tumor mass, known as cancer stem cells (CSCs). This cellular compartment is endowed with tumor-initiating and metastasis formation capabilities. CSC chemoresistance is sustained by a plethora of grow factors and cytokines released by neighboring tumor microenvironment (TME), which is mainly composed by adipocytes, cancer-associated fibroblasts (CAFs), immune and endothelial cells. TME strengthens CSC refractoriness to standard and targeted therapies by enhancing survival signaling pathways, DNA repair machinery, expression of drug efflux transporters and anti-apoptotic proteins. In the last years many efforts have been made to understand CSC-TME crosstalk and develop therapeutic strategy halting this interplay. Here, we report the combinatorial approaches, which perturb the interaction network between CSCs and the different component of TME.

14.
iScience ; 24(6): 102664, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34169240

RESUMEN

Limited therapeutic options are available for advanced colorectal cancer (CRC). Herein, we report that exposure to a neo-synthetic bis(indolyl)thiazole alkaloid analog, nortopsentin 234 (NORA234), leads to an initial reduction of proliferative and clonogenic potential of CRC sphere cells (CR-CSphCs), followed by an adaptive response selecting the CR-CSphC-resistant compartment. Cells spared by the treatment with NORA234 express high levels of CD44v6, associated with a constitutive activation of Wnt pathway. In CR-CSphC-based organoids, NORA234 causes a genotoxic stress paralleled by G2-M cell cycle arrest and activation of CHK1, driving the DNA damage repair of CR-CSphCs, regardless of the mutational background, microsatellite stability, and consensus molecular subtype. Synergistic combination of NORA234 and CHK1 (rabusertib) targeting is synthetic lethal inducing death of both CD44v6-negative and CD44v6-positive CRC stem cell fractions, aside from Wnt pathway activity. These data could provide a rational basis to develop an effective strategy for the treatment of patients with CRC.

15.
Cancers (Basel) ; 13(16)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34439086

RESUMEN

Colorectal cancer (CRC) mortality is mainly caused by patient refractoriness to common anti-cancer therapies and consequent metastasis formation. Besides, the notorious toxic side effects of chemotherapy are a concurrent obstacle to be tackled. Thus, new treatment approaches are needed to effectively improve patient outcomes. Compelling evidence demonstrated that cancer stem cells (CSCs) are responsible for treatment failure and relapse. New natural treatment approaches showed capabilities to selectively target the CSC subpopulation by rendering them targetable by standard cytotoxic compounds. Herein we show the anti-cancer properties of the polymethoxyflavones and prenylflavonoids extracted from Citrus sinensis and Humulus lupulus, respectively. The natural biofunctional fractions, singularly and in combination, reduced the cell viability of CRC stem cells (CR-CSCs) and synergized with 5-fluorouracil and oxaliplatin (FOX) chemotherapy. These phenomena were accompanied by a reduced S and G2/M phase of the cell cycle and upregulation of cell death-related genes. Notably, both phytoextracts in combination with FOX thwarted stemness features in CR-CSCs as demonstrated by the impaired clonogenic potential and decreased Wnt pathway activation. Extracts lowered the expression of CD44v6 and affected the expansion of metastatic CR-CSCs in patients refractory to chemotherapy. Together, this study highlights the importance of polymethoxyflavones and prenylflavonoids as natural remedies to aid oncological therapies.

16.
Nat Commun ; 12(1): 5006, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34408135

RESUMEN

Obesity is a strong risk factor for cancer progression, posing obesity-related cancer as one of the leading causes of death. Nevertheless, the molecular mechanisms that endow cancer cells with metastatic properties in patients affected by obesity remain unexplored.Here, we show that IL-6 and HGF, secreted by tumor neighboring visceral adipose stromal cells (V-ASCs), expand the metastatic colorectal (CR) cancer cell compartment (CD44v6 + ), which in turn secretes neurotrophins such as NGF and NT-3, and recruits adipose stem cells within tumor mass. Visceral adipose-derived factors promote vasculogenesis and the onset of metastatic dissemination by activation of STAT3, which inhibits miR-200a and enhances ZEB2 expression, effectively reprogramming CRC cells into a highly metastatic phenotype. Notably, obesity-associated tumor microenvironment provokes a transition in the transcriptomic expression profile of cells derived from the epithelial consensus molecular subtype (CMS2) CRC patients towards a mesenchymal subtype (CMS4). STAT3 pathway inhibition reduces ZEB2 expression and abrogates the metastatic growth sustained by adipose-released proteins. Together, our data suggest that targeting adipose factors in colorectal cancer patients with obesity may represent a therapeutic strategy for preventing metastatic disease.


Asunto(s)
Tejido Adiposo/citología , Reprogramación Celular , Neoplasias del Colon/fisiopatología , Células Madre Neoplásicas/citología , Nicho de Células Madre , Tejido Adiposo/metabolismo , Animales , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Ratones , Ratones SCID , MicroARNs/genética , MicroARNs/metabolismo , Metástasis de la Neoplasia , Células Madre/citología , Células Madre/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo
17.
Cell Stem Cell ; 27(4): 501-502, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33007230

RESUMEN

The role of Hippo pathway in colorectal cancer (CRC) initiation and progression has been controversial. In this issue of Cell Stem Cell, Cheung et al. (2020) shed new light on a distinct function of the transcriptional co-activator YAP as a tumor suppressor and Wnt pathway inhibitor in CRC.


Asunto(s)
Neoplasias Colorrectales , Proteínas Serina-Treonina Quinasas , Neoplasias Colorrectales/tratamiento farmacológico , Vía de Señalización Hippo , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Células Madre/metabolismo , Factores de Transcripción , Vía de Señalización Wnt
18.
Front Oncol ; 10: 623679, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33628735

RESUMEN

The deregulation of the MYC family of oncogenes, including c-MYC, MYCN and MYCL occurs in many types of cancers, and is frequently associated with a poor prognosis. The majority of functional studies have focused on c-MYC due to its broad expression profile in human cancers. The existence of highly conserved functional domains between MYCN and c-MYC suggests that MYCN participates in similar activities. MYC encodes a basic helix-loop-helix-leucine zipper (bHLH-LZ) transcription factor (TF) whose central oncogenic role in many human cancers makes it a highly desirable therapeutic target. Historically, as a TF, MYC has been regarded as "undruggable". Thus, recent efforts focus on investigating methods to indirectly target MYC to achieve anti-tumor effects. This review will primarily summarize the recent progress in understanding the function of MYCN. It will explore efforts at targeting MYCN, including strategies aimed at suppression of MYCN transcription, destabilization of MYCN protein, inhibition of MYCN transcriptional activity, repression of MYCN targets and utilization of MYCN overexpression dependent synthetic lethality.

19.
Artículo en Inglés | MEDLINE | ID: mdl-32982967

RESUMEN

Thyroid tumors are extremely heterogeneous varying from almost benign tumors with good prognosis as papillary or follicular tumors, to the undifferentiated ones with severe prognosis. Recently, several models of thyroid carcinogenesis have been described, mostly hypothesizing a major role of the thyroid cancer stem cell (TCSC) population in both cancer initiation and metastasis formation. However, the cellular origin of TCSC is still incompletely understood. Here, we review the principal epigenetic mechanisms relevant to TCSC origin and maintenance in both well-differentiated and anaplastic thyroid tumors. Specifically, we describe the alterations in DNA methylation, histone modifiers, and microRNAs (miRNAs) involved in TCSC survival, focusing on the potential of targeting aberrant epigenetic modifications for developing novel therapeutic approaches. Moreover, we discuss the bidirectional relationship between TCSCs and immune cells. The cells of innate and adaptive response can promote the TCSC-driven tumorigenesis, and conversely, TCSCs may favor the expansion of immune cells with protumorigenic functions. Finally, we evaluate the role of the tumor microenvironment and the complex cross-talk of chemokines, hormones, and cytokines in regulating thyroid tumor initiation, progression, and therapy refractoriness. The re-education of the stromal cells can be an effective strategy to fight thyroid cancer. Dissecting the genetic and epigenetic landscape of TCSCs and their interactions with tumor microenvironment cells is urgently needed to select more appropriate treatment and improve the outcome of patients affected by advanced differentiated and undifferentiated thyroid cancers.


Asunto(s)
Metástasis de la Neoplasia/patología , Células Madre Neoplásicas/patología , Neoplasias de la Tiroides/patología , Metilación de ADN , Histonas/genética , Histonas/metabolismo , Humanos , MicroARNs/genética , Metástasis de la Neoplasia/genética , Células Madre Neoplásicas/metabolismo , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Microambiente Tumoral
20.
Oncogene ; 39(5): 987-1003, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31591478

RESUMEN

Despite intense research and clinical efforts, patients affected by advanced colorectal cancer (CRC) have still a poor prognosis. The discovery of colorectal (CR) cancer stem cell (CSC) as the cell compartment responsible for tumor initiation and propagation may provide new opportunities for the development of new therapeutic strategies. Given the reduced sensitivity of CR-CSCs to chemotherapy and the ability of bone morphogenetic proteins (BMP) to promote colonic stem cell differentiation, we aimed to investigate whether an enhanced variant of BMP7 (BMP7v) could sensitize to chemotherapy-resistant CRC cells and tumors. Thirty-five primary human cultures enriched in CR-CSCs, including four from chemoresistant metastatic lesions, were used for in vitro studies and to generate CR-CSC-based mouse avatars to evaluate tumor growth and progression upon treatment with BMP7v alone or in combination with standard therapy or PI3K inhibitors. BMP7v treatment promotes CR-CSC differentiation and recapitulates the cell differentiation-related gene expression profile by suppressing Wnt pathway activity and reducing mesenchymal traits and survival of CR-CSCs. Moreover, in CR-CSC-based mouse avatars, BMP7v exerts an antiangiogenic effect and sensitizes tumor cells to standard chemotherapy regardless of the mutational, MSI, and CMS profiles. Of note, tumor harboring PIK3CA mutations were affected to a lower extent by the combination of BMP7v and chemotherapy. However, the addition of a PI3K inhibitor to the BMP7v-based combination potentiates PIK3CA-mutant tumor drug response and reduces the metastatic lesion size. These data suggest that BMP7v treatment may represent a useful antiangiogenic and prodifferentiation agent, which renders CSCs sensitive to both standard and targeted therapies.


Asunto(s)
Proteína Morfogenética Ósea 7/genética , Proteína Morfogenética Ósea 7/farmacología , Neoplasias Colorrectales/patología , Mutación , Animales , Antineoplásicos/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Ratones , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA