Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Hum Genomics ; 17(1): 57, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37420280

RESUMEN

Alzheimer's disease (AD) poses a profound human, social, and economic burden. Previous studies suggest that extra virgin olive oil (EVOO) may be helpful in preventing cognitive decline. Here, we present a network machine learning method for identifying bioactive phytochemicals in EVOO with the highest potential to impact the protein network linked to the development and progression of the AD. A balanced classification accuracy of 70.3 ± 2.6% was achieved in fivefold cross-validation settings for predicting late-stage experimental drugs targeting AD from other clinically approved drugs. The calibrated machine learning algorithm was then used to predict the likelihood of existing drugs and known EVOO phytochemicals to be similar in action to the drugs impacting AD protein networks. These analyses identified the following ten EVOO phytochemicals with the highest likelihood of being active against AD: quercetin, genistein, luteolin, palmitoleate, stearic acid, apigenin, epicatechin, kaempferol, squalene, and daidzein (in the order from the highest to the lowest likelihood). This in silico study presents a framework that brings together artificial intelligence, analytical chemistry, and omics studies to identify unique therapeutic agents. It provides new insights into how EVOO constituents may help treat or prevent AD and potentially provide a basis for consideration in future clinical studies.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Aceite de Oliva/uso terapéutico , Aceite de Oliva/química , Inteligencia Artificial , Aprendizaje Automático
2.
Hum Genomics ; 15(1): 1, 2021 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-33386081

RESUMEN

In this paper, we introduce a network machine learning method to identify potential bioactive anti-COVID-19 molecules in foods based on their capacity to target the SARS-CoV-2-host gene-gene (protein-protein) interactome. Our analyses were performed using a supercomputing DreamLab App platform, harnessing the idle computational power of thousands of smartphones. Machine learning models were initially calibrated by demonstrating that the proposed method can predict anti-COVID-19 candidates among experimental and clinically approved drugs (5658 in total) targeting COVID-19 interactomics with the balanced classification accuracy of 80-85% in 5-fold cross-validated settings. This identified the most promising drug candidates that can be potentially "repurposed" against COVID-19 including common drugs used to combat cardiovascular and metabolic disorders, such as simvastatin, atorvastatin and metformin. A database of 7694 bioactive food-based molecules was run through the calibrated machine learning algorithm, which identified 52 biologically active molecules, from varied chemical classes, including flavonoids, terpenoids, coumarins and indoles predicted to target SARS-CoV-2-host interactome networks. This in turn was used to construct a "food map" with the theoretical anti-COVID-19 potential of each ingredient estimated based on the diversity and relative levels of candidate compounds with antiviral properties. We expect this in silico predicted food map to play an important role in future clinical studies of precision nutrition interventions against COVID-19 and other viral diseases.


Asunto(s)
COVID-19/dietoterapia , Alimentos Funcionales , Aprendizaje Automático , COVID-19/virología , Bases de Datos Factuales , Genes Virales , Humanos , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación
3.
Nucleic Acids Res ; 41(21): 9911-23, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23965305

RESUMEN

Type II topoisomerases regulate DNA supercoiling and chromosome segregation. They act as ATP-operated clamps that capture a DNA duplex and pass it through a transient DNA break in a second DNA segment via the sequential opening and closure of ATPase-, G-DNA- and C-gates. Here, we present the first 'open clamp' structures of a 3-gate topoisomerase II-DNA complex, the seminal complex engaged in DNA recognition and capture. A high-resolution structure was solved for a (full-length ParE-ParC55)2 dimer of Streptococcus pneumoniae topoisomerase IV bound to two DNA molecules: a closed DNA gate in a B-A-B form double-helical conformation and a second B-form duplex associated with closed C-gate helices at a novel site neighbouring the catalytically important ß-pinwheel DNA-binding domain. The protein N gate is present in an 'arms-wide-open' state with the undimerized N-terminal ParE ATPase domains connected to TOPRIM domains via a flexible joint and folded back allowing ready access both for gate and transported DNA segments and cleavage-stabilizing antibacterial drugs. The structure shows the molecular conformations of all three gates at 3.7 Å, the highest resolution achieved for the full complex to date, and illuminates the mechanism of DNA capture and transport by a type II topoisomerase.


Asunto(s)
Topoisomerasa de ADN IV/química , ADN/química , Adenosina Trifosfatasas/química , Adenosina Trifosfato/química , Sitios de Unión , Transporte Biológico , ADN/metabolismo , Topoisomerasa de ADN IV/metabolismo , Modelos Moleculares , Estructura Terciaria de Proteína , Streptococcus pneumoniae/enzimología
4.
Diagnostics (Basel) ; 14(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39272697

RESUMEN

The integration of artificial intelligence (AI) in medical diagnostics represents a significant advancement in managing upper gastrointestinal (GI) cancer, which is a major cause of global cancer mortality. Specifically for gastric cancer (GC), chronic inflammation causes changes in the mucosa such as atrophy, intestinal metaplasia (IM), dysplasia, and ultimately cancer. Early detection through endoscopic regular surveillance is essential for better outcomes. Foundation models (FMs), which are machine or deep learning models trained on diverse data and applicable to broad use cases, offer a promising solution to enhance the accuracy of endoscopy and its subsequent pathology image analysis. This review explores the recent advancements, applications, and challenges associated with FMs in endoscopy and pathology imaging. We started by elucidating the core principles and architectures underlying these models, including their training methodologies and the pivotal role of large-scale data in developing their predictive capabilities. Moreover, this work discusses emerging trends and future research directions, emphasizing the integration of multimodal data, the development of more robust and equitable models, and the potential for real-time diagnostic support. This review aims to provide a roadmap for researchers and practitioners in navigating the complexities of incorporating FMs into clinical practice for the prevention/management of GC cases, thereby improving patient outcomes.

5.
Sci Rep ; 13(1): 14862, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684345

RESUMEN

Radiotherapy response of rectal cancer patients is dependent on a myriad of molecular mechanisms including response to stress, cell death, and cell metabolism. Modulation of lipid metabolism emerges as a unique strategy to improve radiotherapy outcomes due to its accessibility by bioactive molecules within foods. Even though a few radioresponse modulators have been identified using experimental techniques, trying to experimentally identify all potential modulators is intractable. Here we introduce a machine learning (ML) approach to interrogate the space of bioactive molecules within food for potential modulators of radiotherapy response and provide phytochemically-enriched recipes that encapsulate the benefits of discovered radiotherapy modulators. Potential radioresponse modulators were identified using a genomic-driven network ML approach, metric learning and domain knowledge. Then, recipes from the Recipe1M database were optimized to provide ingredient substitutions maximizing the number of predicted modulators whilst preserving the recipe's culinary attributes. This work provides a pipeline for the design of genomic-driven nutritional interventions to improve outcomes of rectal cancer patients undergoing radiotherapy.


Asunto(s)
Oncología por Radiación , Neoplasias del Recto , Humanos , Genómica , Neoplasias del Recto/genética , Neoplasias del Recto/radioterapia , Muerte Celular , Bases de Datos Factuales
6.
PLoS Pathog ; 6(6): e1000925, 2010 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-20532212

RESUMEN

The HIV-1 viral infectivity factor (Vif) protein recruits an E3 ubiquitin ligase complex, comprising the cellular proteins elongin B and C (EloBC), cullin 5 (Cul5) and RING-box 2 (Rbx2), to the anti-viral proteins APOBEC3G (A3G) and APOBEC3F (A3F) and induces their polyubiquitination and proteasomal degradation. In this study, we used purified proteins and direct in vitro binding assays, isothermal titration calorimetry and NMR spectroscopy to describe the molecular mechanism for assembly of the Vif-EloBC ternary complex. We demonstrate that Vif binds to EloBC in two locations, and that both interactions induce structural changes in the SOCS box of Vif as well as EloBC. In particular, in addition to the previously established binding of Vif's BC box to EloC, we report a novel interaction between the conserved Pro-Pro-Leu-Pro motif of Vif and the C-terminal domain of EloB. Using cell-based assays, we further show that this interaction is necessary for the formation of a functional ligase complex, thus establishing a role of this motif. We conclude that HIV-1 Vif engages EloBC via an induced-folding mechanism that does not require additional co-factors, and speculate that these features distinguish Vif from other EloBC specificity factors such as cellular SOCS proteins, and may enhance the prospects of obtaining therapeutic inhibitors of Vif function.


Asunto(s)
Proteínas Cullin/metabolismo , VIH-1/metabolismo , Pliegue de Proteína , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Secuencia de Aminoácidos , Proteínas Cullin/química , Elonguina , Infecciones por VIH/metabolismo , Infecciones por VIH/patología , Humanos , Inmunoprecipitación , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Proteínas Supresoras de la Señalización de Citocinas/química , Factores de Transcripción/química , Ubiquitinación , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/química
7.
Nat Biotechnol ; 39(2): 169-173, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33169034

RESUMEN

We engineered a machine learning approach, MSHub, to enable auto-deconvolution of gas chromatography-mass spectrometry (GC-MS) data. We then designed workflows to enable the community to store, process, share, annotate, compare and perform molecular networking of GC-MS data within the Global Natural Product Social (GNPS) Molecular Networking analysis platform. MSHub/GNPS performs auto-deconvolution of compound fragmentation patterns via unsupervised non-negative matrix factorization and quantifies the reproducibility of fragmentation patterns across samples.


Asunto(s)
Algoritmos , Cromatografía de Gases y Espectrometría de Masas , Metabolómica , Animales , Anuros , Humanos
8.
Nat Commun ; 9(1): 2579, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29968711

RESUMEN

Type II topoisomerases alter DNA topology to control DNA supercoiling and chromosome segregation and are targets of clinically important anti-infective and anticancer therapeutics. They act as ATP-operated clamps to trap a DNA helix and transport it through a transient break in a second DNA. Here, we present the first X-ray crystal structure solved at 2.83 Å of a closed clamp complete with trapped T-segment DNA obtained by co-crystallizing the ATPase domain of S. pneumoniae topoisomerase IV with a nonhydrolyzable ATP analogue and 14-mer duplex DNA. The ATPase dimer forms a 22 Å protein hole occupied by the kinked DNA bound asymmetrically through positively charged residues lining the hole, and whose mutagenesis impacts the DNA decatenation, DNA relaxation and DNA-dependent ATPase activities of topo IV. These results and a side-bound DNA-ParE structure help explain how the T-segment DNA is captured and transported by a type II topoisomerase, and reveal a new enzyme-DNA interface for drug discovery.


Asunto(s)
Topoisomerasa de ADN IV/metabolismo , ADN Bacteriano/metabolismo , ADN/metabolismo , Dominios Proteicos/fisiología , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Cristalografía por Rayos X , ADN/química , Topoisomerasa de ADN IV/química , Topoisomerasa de ADN IV/genética , ADN Bacteriano/química , Mutagénesis Sitio-Dirigida
9.
Open Biol ; 6(9)2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27655731

RESUMEN

As part of a programme of synthesizing and investigating the biological properties of new fluoroquinolone antibacterials and their targeting of topoisomerase IV from Streptococcus pneumoniae, we have solved the X-ray structure of the complexes of two new 7,8-bridged fluoroquinolones (with restricted C7 group rotation favouring tight binding) in complex with the topoisomerase IV from S. pneumoniae and an 18-base-pair DNA binding site-the E-site-found by our DNA mapping studies to bind drug strongly in the presence of topoisomerase IV (Leo et al. 2005 J. Biol. Chem. 280, 14 252-14 263, doi:10.1074/jbc.M500156200). Although the degree of antibiotic resistance towards fluoroquinolones is much lower than that of ß-lactams and a range of ribosome-bound antibiotics, there is a pressing need to increase the diversity of members of this successful clinically used class of drugs. The quinolone moiety of the new 7,8-bridged agents ACHN-245 and ACHN-454 binds similarly to that of clinafloxocin, levofloxacin, moxifloxacin and trovofloxacin but the cyclic scaffold offers the possibility of chemical modification to produce interactions with other topoisomerase residues at the active site.

10.
Acta Crystallogr D Struct Biol ; 72(Pt 4): 488-96, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27050128

RESUMEN

Klebsiella pneumoniae is a Gram-negative bacterium that is responsible for a range of common infections, including pulmonary pneumonia, bloodstream infections and meningitis. Certain strains of Klebsiella have become highly resistant to antibiotics. Despite the vast amount of research carried out on this class of bacteria, the molecular structure of its topoisomerase IV, a type II topoisomerase essential for catalysing chromosomal segregation, had remained unknown. In this paper, the structure of its DNA-cleavage complex is reported at 3.35 Å resolution. The complex is comprised of ParC breakage-reunion and ParE TOPRIM domains of K. pneumoniae topoisomerase IV with DNA stabilized by levofloxacin, a broad-spectrum fluoroquinolone antimicrobial agent. This complex is compared with a similar complex from Streptococcus pneumoniae, which has recently been solved.


Asunto(s)
Proteínas Bacterianas/química , Topoisomerasa de ADN IV/química , Klebsiella pneumoniae/enzimología , Quinolonas/química , Streptococcus pneumoniae/enzimología , ADN Bacteriano/química
11.
Open Biol ; 3(11): 130100, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24225024

RESUMEN

The HIV-1 viral infectivity factor (Vif) neutralizes cell-encoded antiviral APOBEC3 proteins by recruiting a cellular ElonginB (EloB)/ElonginC (EloC)/Cullin5-containing ubiquitin ligase complex, resulting in APOBEC3 ubiquitination and proteolysis. The suppressors-of-cytokine-signalling-like domain (SOCS-box) of HIV-1 Vif is essential for E3 ligase engagement, and contains a BC box as well as an unusual proline-rich motif. Here, we report the NMR solution structure of the Vif SOCS-ElonginBC (EloBC) complex. In contrast to SOCS-boxes described in other proteins, the HIV-1 Vif SOCS-box contains only one α-helical domain followed by a ß-sheet fold. The SOCS-box of Vif binds primarily to EloC by hydrophobic interactions. The functionally essential proline-rich motif mediates a direct but weak interaction with residues 101-104 of EloB, inducing a conformational change from an unstructured state to a structured state. The structure of the complex and biophysical studies provide detailed insight into the function of Vif's proline-rich motif and reveal novel dynamic information on the Vif-EloBC interaction.


Asunto(s)
VIH-1/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Supresoras de la Señalización de Citocinas/química , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/química , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Cullin/química , Proteínas Cullin/metabolismo , Elonguina , VIH-1/química , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Prolina/metabolismo , Conformación Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/genética
12.
PLoS One ; 5(6): e11338, 2010 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-20596531

RESUMEN

Type II DNA topoisomerases are ubiquitous enzymes with essential functions in DNA replication, recombination and transcription. They change DNA topology by forming a transient covalent cleavage complex with a gate-DNA duplex that allows transport of a second duplex though the gate. Despite its biological importance and targeting by anticancer and antibacterial drugs, cleavage complex formation and reversal is not understood for any type II enzyme. To address the mechanism, we have used X-ray crystallography to study sequential states in the formation and reversal of a DNA cleavage complex by topoisomerase IV from Streptococcus pneumoniae, the bacterial type II enzyme involved in chromosome segregation. A high resolution structure of the complex captured by a novel antibacterial dione reveals two drug molecules intercalated at a cleaved B-form DNA gate and anchored by drug-specific protein contacts. Dione release generated drug-free cleaved and resealed DNA complexes in which the DNA gate instead adopts an unusual A/B-form helical conformation with a Mg(2+) ion repositioned to coordinate each scissile phosphodiester group and promote reversible cleavage by active-site tyrosines. These structures, the first for putative reaction intermediates of a type II topoisomerase, suggest how a type II enzyme reseals DNA during its normal reaction cycle and illuminate aspects of drug arrest important for the development of new topoisomerase-targeting therapeutics.


Asunto(s)
Topoisomerasa de ADN IV/metabolismo , ADN/metabolismo , Conformación de Ácido Nucleico , Cristalografía por Rayos X , ADN/química , Replicación del ADN , Modelos Moleculares , Recombinación Genética , Streptococcus pneumoniae/enzimología , Transcripción Genética
13.
Nat Struct Mol Biol ; 16(6): 667-9, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19448616

RESUMEN

Type II topoisomerases alter DNA topology by forming a covalent DNA-cleavage complex that allows DNA transport through a double-stranded DNA break. We present the structures of cleavage complexes formed by the Streptococcus pneumoniae ParC breakage-reunion and ParE TOPRIM domains of topoisomerase IV stabilized by moxifloxacin and clinafloxacin, two antipneumococcal fluoroquinolones. These structures reveal two drug molecules intercalated at the highly bent DNA gate and help explain antibacterial quinolone action and resistance.


Asunto(s)
Antígenos de Neoplasias/química , ADN-Topoisomerasas de Tipo II/química , Proteínas de Unión al ADN/química , ADN/química , Quinolonas/química , Streptococcus pneumoniae/metabolismo , Antiinfecciosos/farmacología , Compuestos Aza/farmacología , Topoisomerasa de ADN IV/metabolismo , Farmacorresistencia Bacteriana , Fluoroquinolonas/farmacología , Modelos Moleculares , Conformación Molecular , Moxifloxacino , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Quinolinas/farmacología
14.
PLoS One ; 3(9): e3201, 2008 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-18787651

RESUMEN

BACKGROUND: Streptococcus pneumoniae is the major cause of community-acquired pneumonia and is also associated with bronchitis, meningitis, otitis and sinusitis. The emergence and increasing prevalence of resistance to penicillin and other antibiotics has led to interest in other anti-pneumonococcal drugs such as quinolones that target the enzymes DNA gyrase and topoisomerase IV. During crystallization and in the avenues to finding a method to determine phases for the structure of the ParC55 breakage-reunion domain of topoisomerase IV from Streptococcus pneumoniae, obstacles were faced at each stage of the process. These problems included: majority of the crystals being twinned, either non-diffracting or exhibiting a high mosaic spread. The crystals, which were grown under conditions that favoured diffraction, were difficult to flash-freeze without loosing diffraction. The initial structure solution by molecular replacement failed and the approach proved to be unviable due to the complexity of the problem. In the end the successful structure solution required an in-depth data analysis and a very detailed molecular replacement search. METHODOLOGY/PRINCIPAL FINDINGS: Crystal anti-twinning agents have been tested and two different methods of flash freezing have been compared. The fragility of the crystals did not allow the usual method of transferring the crystals into the heavy atom solution. Consequently, it was necessary to co-crystallize in the presence of the heavy atom compound. The multiple isomorphous replacement approach was unsuccessful because the 7 cysteine mutants which were engineered could not be successfully derivatized. Ultimately, molecular replacement was used to solve the structure by sorting through a large number of solutions in space group P1 using CNS. CONCLUSIONS/SIGNIFICANCE: The main objective of this paper is to describe the obstacles which were faced and overcome in order to acquire data sets on such difficult crystals and determine phases for successful structure solution.


Asunto(s)
Cristalografía por Rayos X/métodos , Topoisomerasa de ADN IV/química , Streptococcus pneumoniae/enzimología , Bioquímica/métodos , Cristalización , Cisteína/química , Detergentes/farmacología , Dimerización , Modelos Moleculares , Mutación , Plásmidos/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína
15.
PLoS One ; 2(3): e301, 2007 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-17375187

RESUMEN

The 2.7 A crystal structure of the 55-kDa N-terminal breakage-reunion domain of topoisomerase (topo) IV subunit A (ParC) from Streptococcus pneumoniae, the first for the quinolone targets from a gram-positive bacterium, has been solved and reveals a 'closed' dimer similar in fold to Escherichia coli DNA gyrase subunit A (GyrA), but distinct from the 'open' gate structure of Escherichia coli ParC. Unlike GyrA whose DNA binding groove is largely positively charged, the DNA binding site of ParC exhibits a distinct pattern of alternating positively and negatively charged regions coincident with the predicted positions of the grooves and phosphate backbone of DNA. Based on the ParC structure, a new induced-fit model for sequence-specific recognition of the gate (G) segment by ParC has been proposed. These features may account for the unique DNA recognition and quinolone targeting properties of pneumococcal type II topoisomerases compared to their gram-negative counterparts.


Asunto(s)
Topoisomerasa de ADN IV/genética , Quinolonas/farmacología , Streptococcus pneumoniae/enzimología , Sitios de Unión , Cristalografía por Rayos X/métodos , Topoisomerasa de ADN IV/química , ADN-Topoisomerasas de Tipo II/química , ADN-Topoisomerasas de Tipo II/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Dimerización , Escherichia coli/enzimología , Escherichia coli/genética , Conformación Proteica , Quinolonas/química , Electricidad Estática , Streptococcus pneumoniae/genética
16.
Eur Biophys J ; 31(2): 153-62, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12012119

RESUMEN

500 MHz (1)H NMR spectroscopy has been used to determine thermodynamic and structural information on the hetero-association of daunomycin (DAU) with the phenanthridine mutagenic dyes ethidium bromide (EB) and propidium iodide (PI). The NMR complexation data have been analysed by a statistical-thermodynamic model which takes into account indefinite association for both the self-association of the drugs and their hetero-association. The results have been used to estimate the effect of the side chains of the phenanthridines on the competitive binding between DAU and the mutagens with DNA. Knowledge of the equilibrium constants for self-association of the phenanthridines and DAU, their hetero-association and their complexation with a DNA fragment, the deoxytetranucleotide 5'-d(TpGpCpA), enabled the relative content of each of the EB-DAU, PI-DAU, EB-DAU-d(TGCA) and PI-DAU-d(TGCA) complexes to be calculated as a function of drug concentration in mixed solutions. The results provide some insight into the molecular basis of the action of combinations of biologically-active molecules. When intercalating drugs are used in combination, it is found that the decrease in binding of drug or mutagen with DNA is due both to formation of drug-mutagen hetero-association complexes in the mixed solution and to competition for the binding sites by the aromatic molecules; the relative importance of each process depends on the molecular properties of the drug or mutagen molecules being considered. Thus, the longer branched side chain of PI and the electrostatic contribution of the extra positive charge of the molecule compared with the ethyl group of EB results in lower affinity for self-association of PI molecules and their hetero-association with DAU, but increases the degree of binding of PI with DNA.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Daunorrubicina/farmacología , Fenantridinas/farmacología , Unión Competitiva , ADN/metabolismo , Relación Dosis-Respuesta a Droga , Etidio/farmacología , Enlace de Hidrógeno , Sustancias Intercalantes/farmacología , Cinética , Ligandos , Espectroscopía de Resonancia Magnética , Modelos Químicos , Mutágenos , Propidio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA