Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Development ; 148(12)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34081130

RESUMEN

Epigenetic factors have been shown to play a crucial role in X-linked intellectual disability (XLID). Here, we investigate the contribution of the XLID-associated histone demethylase PHF8 to astrocyte differentiation and function. Using genome-wide analyses and biochemical assays in mouse astrocytic cultures, we reveal a regulatory crosstalk between PHF8 and the Notch signaling pathway that balances the expression of the master astrocytic gene Nfia. Moreover, PHF8 regulates key synaptic genes in astrocytes by maintaining low levels of H4K20me3. Accordingly, astrocytic-PHF8 depletion has a striking effect on neuronal synapse formation and maturation in vitro. These data reveal that PHF8 is crucial in astrocyte development to maintain chromatin homeostasis and limit heterochromatin formation at synaptogenic genes. Our studies provide insights into the involvement of epigenetics in intellectual disability.


Asunto(s)
Astrocitos/metabolismo , Diferenciación Celular , Regulación de la Expresión Génica , Histona Demetilasas/genética , Factores de Transcripción/genética , Animales , Astrocitos/citología , Sitios de Unión , Biomarcadores , Diferenciación Celular/genética , Proliferación Celular , Perfilación de la Expresión Génica , Histona Demetilasas/metabolismo , Histonas/metabolismo , Ratones , Modelos Biológicos , Neurogénesis , Neuronas/metabolismo , Unión Proteica , Sinapsis/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
2.
Bioessays ; 44(12): e2200145, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36253122

RESUMEN

Cis-regulatory elements govern gene expression programs to determine cell identity during development. Recently, the possibility that multiple enhancers are orchestrated in clusters of enhancers has been suggested. How these elements are arranged in the 3D space to control the activation of a specific promoter remains unclear. Our recent work revealed that the TGFß pathway drives the assembly of enhancer clusters and precise gene activation during neurogenesis. We discovered that the TGFß pathway coactivator JMJD3 was essential in maintaining these structures in the 3D space. To do that, JMJD3 required an intrinsically disordered region involved in forming phase-separated biomolecular condensates found in the enhancer clusters. Our data support the existence of a relationship between 3D-conformation of the chromatin, biomolecular condensates, and TGFß-driven response during mammalian neurogenesis. In this review, we discuss how signaling (TGFß), epigenetics (JMJD3), and biochemical properties (biomolecular condensates nucleation) are coordinated to modulate the genome structure to guarantee proper neural development. Moreover, we comment on the potential underlying mechanisms and implications of the enhancer-mediated regulation. Finally, we point out the knowledge gaps that still need to be addressed.


Asunto(s)
Elementos de Facilitación Genéticos , Factor de Crecimiento Transformador beta , Animales , Elementos de Facilitación Genéticos/genética , Factor de Crecimiento Transformador beta/genética , Condensados Biomoleculares , Cromatina/genética , Regiones Promotoras Genéticas/genética , Mamíferos/genética
3.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35887017

RESUMEN

The Jumonji-C (JmjC) family of lysine demethylases (KDMs) (JMJC-KDMs) plays an essential role in controlling gene expression and chromatin structure. In most cases, their function has been attributed to the demethylase activity. However, accumulating evidence demonstrates that these proteins play roles distinct from histone demethylation. This raises the possibility that they might share domains that contribute to their functional outcome. Here, we show that the JMJC-KDMs contain low-complexity domains and intrinsically disordered regions (IDR), which in some cases reached 70% of the protein. Our data revealed that plant homeodomain finger protein (PHF2), KDM2A, and KDM4B cluster by phase separation. Moreover, our molecular analysis implies that PHF2 IDR contributes to transcription regulation. These data suggest that clustering via phase separation is a common feature that JMJC-KDMs utilize to facilitate their functional responses. Our study uncovers a novel potential function for the JMJC-KDM family that sheds light on the mechanisms to achieve the competent concentration of molecules in time and space within the cell nucleus.


Asunto(s)
Histona Demetilasas , Histona Demetilasas con Dominio de Jumonji , Núcleo Celular/metabolismo , Desmetilación , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Lisina/metabolismo
4.
Nucleic Acids Res ; 46(7): 3351-3365, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29438503

RESUMEN

During neurogenesis, dynamic developmental cues, transcription factors and histone modifying enzymes regulate the gene expression programs by modulating the activity of neural-specific enhancers. How transient developmental signals coordinate transcription factor recruitment to enhancers and to which extent chromatin modifiers contribute to enhancer activity is starting to be uncovered. Here, we take advantage of neural stem cells as a model to unravel the mechanisms underlying neural enhancer activation in response to the TGFß signaling. Genome-wide experiments demonstrate that the proneural factor ASCL1 assists SMAD3 in the binding to a subset of enhancers. Once located at the enhancers, SMAD3 recruits the histone demethylase JMJD3 and the remodeling factor CHD8, creating the appropriate chromatin landscape to allow enhancer transcription and posterior gene activation. Finally, to analyze the phenotypical traits owed to cis-regulatory regions, we use CRISPR-Cas9 technology to demonstrate that the TGFß-responsive Neurog2 enhancer is essential for proper neuronal polarization.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Elementos de Facilitación Genéticos/genética , Neurogénesis/genética , Proteína smad3/genética , Factor de Crecimiento Transformador beta/genética , Animales , Sistemas CRISPR-Cas/genética , Linaje de la Célula/genética , Polaridad Celular/genética , Proteínas de Unión al ADN/genética , Epigénesis Genética , Histona Demetilasas con Dominio de Jumonji/genética , Ratones , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/metabolismo , Regiones Promotoras Genéticas , Transducción de Señal/genética , Factores de Transcripción/genética
5.
Nat Commun ; 13(1): 3263, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672304

RESUMEN

Enhancers are key regulatory elements that govern gene expression programs in response to developmental signals. However, how multiple enhancers arrange in the 3D-space to control the activation of a specific promoter remains unclear. To address this question, we exploited our previously characterized TGFß-response model, the neural stem cells, focusing on a ~374 kb locus where enhancers abound. Our 4C-seq experiments reveal that the TGFß pathway drives the assembly of an enhancer-cluster and precise gene activation. We discover that the TGFß pathway coactivator JMJD3 is essential to maintain these structures. Using live-cell imaging techniques, we demonstrate that an intrinsically disordered region contained in JMJD3 is involved in the formation of phase-separated biomolecular condensates, which are found in the enhancer-cluster. Overall, in this work we uncover novel functions for the coactivator JMJD3, and we shed light on the relationships between the 3D-conformation of the chromatin and the TGFß-driven response during mammalian neurogenesis.


Asunto(s)
Células-Madre Neurales , Factor de Crecimiento Transformador beta , Animales , Cromatina/genética , Cromatina/metabolismo , Elementos de Facilitación Genéticos/genética , Expresión Génica , Genoma , Mamíferos/genética , Células-Madre Neurales/metabolismo , Activación Transcripcional/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA