Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Development ; 151(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39140247

RESUMEN

Changes in gene dosage can have tremendous evolutionary potential (e.g. whole-genome duplications), but without compensatory mechanisms, they can also lead to gene dysregulation and pathologies. Sex chromosomes are a paradigmatic example of naturally occurring gene dosage differences and their compensation. In species with chromosome-based sex determination, individuals within the same population necessarily show 'natural' differences in gene dosage for the sex chromosomes. In this Review, we focus on the mammalian X chromosome and discuss recent new insights into the dosage-compensation mechanisms that evolved along with the emergence of sex chromosomes, namely X-inactivation and X-upregulation. We also discuss the evolution of the genetic loci and molecular players involved, as well as the regulatory diversity and potentially different requirements for dosage compensation across mammalian species.


Asunto(s)
Compensación de Dosificación (Genética) , Mamíferos , Inactivación del Cromosoma X , Cromosoma X , Animales , Humanos , Cromosoma X/genética , Mamíferos/genética , Inactivación del Cromosoma X/genética , Dosificación de Gen , Evolución Molecular
2.
PLoS Genet ; 18(7): e1010226, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35793353

RESUMEN

Polyploidization may precipitate dramatic changes to the genome, including chromosome rearrangements, gene loss, and changes in gene expression. In dioecious plants, the sex-determining mechanism may also be disrupted by polyploidization, with the potential evolution of hermaphroditism. However, while dioecy appears to have persisted through a ploidy transition in some species, it is unknown whether the newly formed polyploid maintained its sex-determining system uninterrupted, or whether dioecy re-evolved after a period of hermaphroditism. Here, we develop a bioinformatic pipeline using RNA-sequencing data from natural populations to demonstrate that the allopolyploid plant Mercurialis canariensis directly inherited its sex-determining region from one of its diploid progenitor species, M. annua, and likely remained dioecious through the transition. The sex-determining region of M. canariensis is smaller than that of its diploid progenitor, suggesting that the non-recombining region of M. annua expanded subsequent to the polyploid origin of M. canariensis. Homeologous pairs show partial sexual subfunctionalization. We discuss the possibility that gene duplicates created by polyploidization might contribute to resolving sexual antagonism.


Asunto(s)
Trastornos del Desarrollo Sexual , Euphorbiaceae , Cromosomas , Diploidia , Trastornos del Desarrollo Sexual/genética , Euphorbiaceae/genética , Poliploidía
3.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37988296

RESUMEN

Many insects carry an ancient X chromosome-the Drosophila Muller element F-that likely predates their origin. Interestingly, the X has undergone turnover in multiple fly species (Diptera) after being conserved for more than 450 My. The long evolutionary distance between Diptera and other sequenced insect clades makes it difficult to infer what could have contributed to this sudden increase in rate of turnover. Here, we produce the first genome and transcriptome of a long overlooked sister-order to Diptera: Mecoptera. We compare the scorpionfly Panorpa cognata X-chromosome gene content, expression, and structure to that of several dipteran species as well as more distantly related insect orders (Orthoptera and Blattodea). We find high conservation of gene content between the mecopteran X and the dipteran Muller F element, as well as several shared biological features, such as the presence of dosage compensation and a low amount of genetic diversity, consistent with a low recombination rate. However, the 2 homologous X chromosomes differ strikingly in their size and number of genes they carry. Our results therefore support a common ancestry of the mecopteran and ancestral dipteran X chromosomes, and suggest that Muller element F shrank in size and gene content after the split of Diptera and Mecoptera, which may have contributed to its turnover in dipteran insects.


Asunto(s)
Insectos , Cromosoma X , Animales , Humanos , Cromosoma X/genética , Insectos/genética , Drosophila/genética , Cromosomas Humanos X , Evolución Biológica , Compensación de Dosificación (Genética)
4.
Mol Biol Evol ; 38(12): 5345-5358, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34146097

RESUMEN

Schistosomes, the human parasites responsible for snail fever, are female-heterogametic. Different parts of their ZW sex chromosomes have stopped recombining in distinct lineages, creating "evolutionary strata" of various ages. Although the Z-chromosome is well characterized at the genomic and molecular level, the W-chromosome has remained largely unstudied from an evolutionary perspective, as only a few W-linked genes have been detected outside of the model species Schistosoma mansoni. Here, we characterize the gene content and evolution of the W-chromosomes of S. mansoni and of the divergent species S. japonicum. We use a combined RNA/DNA k-mer based pipeline to assemble around 100 candidate W-specific transcripts in each of the species. About half of them map to known protein coding genes, the majority homologous to S. mansoni Z-linked genes. We perform an extended analysis of the evolutionary strata present in the two species (including characterizing a previously undetected young stratum in S. japonicum) to infer patterns of sequence and expression evolution of W-linked genes at different time points after recombination was lost. W-linked genes show evidence of degeneration, including high rates of protein evolution and reduced expression. Most are found in young lineage-specific strata, with only a few high expression ancestral W-genes remaining, consistent with the progressive erosion of nonrecombining regions. Among these, the splicing factor u2af2 stands out as a promising candidate for primary sex determination, opening new avenues for understanding the molecular basis of the reproductive biology of this group. Keywords: sex chromosomes, evolutionary strata, W-linked gene, sex determining gene, schistosome parasites.


Asunto(s)
Evolución Molecular , Cromosomas Sexuales , Animales , Femenino , Genoma , Genómica , Humanos , Schistosoma/genética , Cromosomas Sexuales/genética
5.
Proc Biol Sci ; 289(1968): 20211985, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35135349

RESUMEN

The t-haplotype of mice is a classical model for autosomal transmission distortion. A largely non-recombining variant of the proximal region of chromosome 17, it is transmitted to more than 90% of the progeny of heterozygous males through the disabling of sperm carrying a standard chromosome. While extensive genetic and functional work has shed light on individual genes involved in drive, much less is known about the evolution and function of the rest of its hundreds of genes. Here, we characterize the sequence and expression of dozens of t-specific transcripts and of their chromosome 17 homologues. Many genes showed reduced expression of the t-allele, but an equal number of genes showed increased expression of their t-copy, consistent with increased activity or a newly evolved function. Genes on the t-haplotype had a significantly higher non-synonymous substitution rate than their homologues on the standard chromosome, with several genes harbouring dN/dS ratios above 1. Finally, the t-haplotype has acquired at least two genes from other chromosomes, which show high and tissue-specific expression. These results provide a first overview of the gene content of this selfish element, and support a more dynamic evolutionary scenario than expected of a large genomic region with almost no recombination.


Asunto(s)
Cromosomas , Genómica , Alelos , Animales , Haplotipos , Heterocigoto , Masculino , Ratones
6.
Proc Biol Sci ; 288(1959): 20211720, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34547909

RESUMEN

While sexual reproduction is widespread among many taxa, asexual lineages have repeatedly evolved from sexual ancestors. Despite extensive research on the evolution of sex, it is still unclear whether this switch represents a major transition requiring major molecular reorganization, and how convergent the changes involved are. In this study, we investigated the phylogenetic relationship and patterns of gene expression of sexual and asexual lineages of Eurasian Artemia brine shrimp, to assess how gene expression patterns are affected by the transition to asexuality. We find only a few genes that are consistently associated with the evolution of asexuality, suggesting that this shift may not require an extensive overhauling of the meiotic machinery. While genes with sex-biased expression have high rates of expression divergence within Eurasian Artemia, neither female- nor male-biased genes appear to show unusual evolutionary patterns after sexuality is lost, contrary to theoretical expectations.


Asunto(s)
Artemia , Reproducción , Animales , Artemia/genética , Femenino , Expresión Génica , Masculino , Partenogénesis , Filogenia , Reproducción Asexuada
7.
Mol Biol Evol ; 36(3): 500-515, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30590559

RESUMEN

Pleiotropy is the well-established idea that a single mutation affects multiple phenotypes. If a mutation has opposite effects on fitness when expressed in different contexts, then genetic conflict arises. Pleiotropic conflict is expected to reduce the efficacy of selection by limiting the fixation of beneficial mutations through adaptation, and the removal of deleterious mutations through purifying selection. Although this has been widely discussed, in particular in the context of a putative "gender load," it has yet to be systematically quantified. In this work, we empirically estimate to which extent different pleiotropic regimes impede the efficacy of selection in Drosophila melanogaster. We use whole-genome polymorphism data from a single African population and divergence data from D. simulans to estimate the fraction of adaptive fixations (α), the rate of adaptation (ωA), and the direction of selection (DoS). After controlling for confounding covariates, we find that the different pleiotropic regimes have a relatively small, but significant, effect on selection efficacy. Specifically, our results suggest that pleiotropic sexual antagonism may restrict the efficacy of selection, but that this conflict can be resolved by limiting the expression of genes to the sex where they are beneficial. Intermediate levels of pleiotropy across tissues and life stages can also lead to maladaptation in D. melanogaster, due to inefficient purifying selection combined with low frequency of mutations that confer a selective advantage. Thus, our study highlights the need to consider the efficacy of selection in the context of antagonistic pleiotropy, and of genetic conflict in general.


Asunto(s)
Drosophila melanogaster/genética , Pleiotropía Genética , Selección Genética , Sustitución de Aminoácidos , Animales , Evolución Molecular , Femenino , Expresión Génica , Redes Reguladoras de Genes , Masculino
8.
Nature ; 499(7458): 332-5, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23792562

RESUMEN

Although transitions of sex-determination mechanisms are frequent in species with homomorphic sex chromosomes, heteromorphic sex chromosomes are thought to represent a terminal evolutionary stage owing to chromosome-specific adaptations such as dosage compensation or an accumulation of sex-specific mutations. Here we show that an autosome of Drosophila, the dot chromosome, was ancestrally a differentiated X chromosome. We analyse the whole genome of true fruitflies (Tephritidae), flesh flies (Sarcophagidae) and soldier flies (Stratiomyidae) to show that genes located on the dot chromosome of Drosophila are X-linked in outgroup species, whereas Drosophila X-linked genes are autosomal. We date this chromosomal transition to early drosophilid evolution by sequencing the genome of other Drosophilidae. Our results reveal several puzzling aspects of Drosophila dot chromosome biology to be possible remnants of its former life as a sex chromosome, such as its minor feminizing role in sex determination or its targeting by a chromosome-specific regulatory mechanism. We also show that patterns of biased gene expression of the dot chromosome during early embryogenesis, oogenesis and spermatogenesis resemble that of the current X chromosome. Thus, although sex chromosomes are not necessarily evolutionary end points and can revert back to an autosomal inheritance, the highly specialized genome architecture of this former X chromosome suggests that severe fitness costs must be overcome for such a turnover to occur.


Asunto(s)
Cromosomas de Insectos , Drosophila/genética , Cromosomas Sexuales , Animales , Drosophila melanogaster/genética , Evolución Molecular , Femenino , Masculino , Tephritidae/genética
9.
Mol Biol Evol ; 34(10): 2637-2649, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28957502

RESUMEN

While chromosome-wide dosage compensation of the X chromosome has been found in many species, studies in ZW clades have indicated that compensation of the Z is more localized and/or incomplete. In the ZW Lepidoptera, some species show complete compensation of the Z chromosome, while others lack full equalization, but what drives these inconsistencies is unclear. Here, we compare patterns of male and female gene expression on the Z chromosome of two closely related butterfly species, Papilio xuthus and Papilio machaon, and in multiple tissues of two moths species, Plodia interpunctella and Bombyx mori, which were previously found to differ in the extent to which they equalize Z-linked gene expression between the sexes. We find that, while some species and tissues seem to have incomplete dosage compensation, this is in fact due to the accumulation of male-biased genes and the depletion of female-biased genes on the Z chromosome. Once this is accounted for, the Z chromosome is fully compensated in all four species, through the up-regulation of Z expression in females and in some cases additional down-regulation in males. We further find that both sex-biased genes and Z-linked genes have increased rates of expression divergence in this clade, and that this can lead to fast shifts in patterns of gene expression even between closely related species. Taken together, these results show that the uneven distribution of sex-biased genes on sex chromosomes can confound conclusions about dosage compensation and that Z chromosome-wide dosage compensation is not only possible but ubiquitous among Lepidoptera.


Asunto(s)
Mariposas Diurnas/genética , Compensación de Dosificación (Genética)/genética , Animales , Evolución Molecular , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Lepidópteros/genética , Mariposas Nocturnas/genética , Caracteres Sexuales , Cromosomas Sexuales/genética , Factores Sexuales , Cromosoma X
10.
PLoS Biol ; 13(4): e1002078, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25879221

RESUMEN

Many species groups, including mammals and many insects, determine sex using heteromorphic sex chromosomes. Diptera flies, which include the model Drosophila melanogaster, generally have XY sex chromosomes and a conserved karyotype consisting of six chromosomal arms (five large rods and a small dot), but superficially similar karyotypes may conceal the true extent of sex chromosome variation. Here, we use whole-genome analysis in 37 fly species belonging to 22 different families of Diptera and uncover tremendous hidden diversity in sex chromosome karyotypes among flies. We identify over a dozen different sex chromosome configurations, and the small dot chromosome is repeatedly used as the sex chromosome, which presumably reflects the ancestral karyotype of higher Diptera. However, we identify species with undifferentiated sex chromosomes, others in which a different chromosome replaced the dot as a sex chromosome or in which up to three chromosomal elements became incorporated into the sex chromosomes, and others yet with female heterogamety (ZW sex chromosomes). Transcriptome analysis shows that dosage compensation has evolved multiple times in flies, consistently through up-regulation of the single X in males. However, X chromosomes generally show a deficiency of genes with male-biased expression, possibly reflecting sex-specific selective pressures. These species thus provide a rich resource to study sex chromosome biology in a comparative manner and show that similar selective forces have shaped the unique evolution of sex chromosomes in diverse fly taxa.


Asunto(s)
Dípteros/genética , Cromosomas Sexuales , Animales , Dípteros/clasificación , Compensación de Dosificación (Genética) , Femenino , Masculino , Filogenia
11.
Proc Natl Acad Sci U S A ; 112(40): 12450-5, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26385968

RESUMEN

Contrary to the pattern seen in mammalian sex chromosomes, where most Y-linked genes have X-linked homologs, the Drosophila X and Y chromosomes appear to be unrelated. Most of the Y-linked genes have autosomal paralogs, so autosome-to-Y transposition must be the main source of Drosophila Y-linked genes. Here we show how these genes were acquired. We found a previously unidentified gene (flagrante delicto Y, FDY) that originated from a recent duplication of the autosomal gene vig2 to the Y chromosome of Drosophila melanogaster. Four contiguous genes were duplicated along with vig2, but they became pseudogenes through the accumulation of deletions and transposable element insertions, whereas FDY remained functional, acquired testis-specific expression, and now accounts for ∼20% of the vig2-like mRNA in testis. FDY is absent in the closest relatives of D. melanogaster, and DNA sequence divergence indicates that the duplication to the Y chromosome occurred ∼2 million years ago. Thus, FDY provides a snapshot of the early stages of the establishment of a Y-linked gene and demonstrates how the Drosophila Y has been accumulating autosomal genes.


Asunto(s)
Drosophila melanogaster/genética , Genes de Insecto/genética , Genes Ligados a Y/genética , Cromosoma Y/genética , Animales , Mapeo Cromosómico , Cromosomas de Insectos/genética , Proteínas de Drosophila/clasificación , Proteínas de Drosophila/genética , Femenino , Duplicación de Gen , Expresión Génica , Mutación INDEL , Masculino , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Cromosoma X/genética
13.
PLoS Biol ; 11(8): e1001643, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24015111

RESUMEN

Snakes exhibit genetic sex determination, with female heterogametic sex chromosomes (ZZ males, ZW females). Extensive cytogenetic work has suggested that the level of sex chromosome heteromorphism varies among species, with Boidae having entirely homomorphic sex chromosomes, Viperidae having completely heteromorphic sex chromosomes, and Colubridae showing partial differentiation. Here, we take a genomic approach to compare sex chromosome differentiation in these three snake families. We identify homomorphic sex chromosomes in boas (Boidae), but completely heteromorphic sex chromosomes in both garter snakes (Colubridae) and pygmy rattlesnake (Viperidae). Detection of W-linked gametologs enables us to establish the presence of evolutionary strata on garter and pygmy rattlesnake sex chromosomes where recombination was abolished at different time points. Sequence analysis shows that all strata are shared between pygmy rattlesnake and garter snake, i.e., recombination was abolished between the sex chromosomes before the two lineages diverged. The sex-biased transmission of the Z and its hemizygosity in females can impact patterns of molecular evolution, and we show that rates of evolution for Z-linked genes are increased relative to their pseudoautosomal homologs, both at synonymous and amino acid sites (even after controlling for mutational biases). This demonstrates that mutation rates are male-biased in snakes (male-driven evolution), but also supports faster-Z evolution due to differential selective effects on the Z. Finally, we perform a transcriptome analysis in boa and pygmy rattlesnake to establish baseline levels of sex-biased expression in homomorphic sex chromosomes, and show that heteromorphic ZW chromosomes in rattlesnakes lack chromosome-wide dosage compensation. Our study provides the first full scale overview of the evolution of snake sex chromosomes at the genomic level, thus greatly expanding our knowledge of reptilian and vertebrate sex chromosomes evolution.


Asunto(s)
Compensación de Dosificación (Genética)/genética , Genómica/métodos , Cromosomas Sexuales/genética , Serpientes/genética , Animales , Evolución Biológica , Femenino , Masculino
14.
Proc Natl Acad Sci U S A ; 110(16): 6453-8, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23547111

RESUMEN

Sex chromosomes originate from autosomes. The accumulation of sexually antagonistic mutations on protosex chromosomes selects for a loss of recombination and sets in motion the evolutionary processes generating heteromorphic sex chromosomes. Recombination suppression and differentiation are generally viewed as the default path of sex chromosome evolution, and the occurrence of old, homomorphic sex chromosomes, such as those of ratite birds, has remained a mystery. Here, we analyze the genome and transcriptome of emu (Dromaius novaehollandiae) and confirm that most genes on the sex chromosome are shared between the Z and W. Surprisingly, however, levels of gene expression are generally sex-biased for all sex-linked genes relative to autosomes, including those in the pseudoautosomal region, and the male-bias increases after gonad formation. This expression bias suggests that the emu sex chromosomes have become masculinized, even in the absence of ZW differentiation. Thus, birds may have taken different evolutionary solutions to minimize the deleterious effects imposed by sexually antagonistic mutations: some lineages eliminate recombination along the protosex chromosomes to physically restrict sexually antagonistic alleles to one sex, whereas ratites evolved sex-biased expression to confine the product of a sexually antagonistic allele to the sex it benefits. This difference in conflict resolution may explain the preservation of recombining, homomorphic sex chromosomes in other lineages and illustrates the importance of sexually antagonistic mutations driving the evolution of sex chromosomes.


Asunto(s)
Dromaiidae/genética , Evolución Molecular , Regulación de la Expresión Génica/genética , Caracteres Sexuales , Cromosomas Sexuales/genética , Animales , Biología Computacional , Femenino , Perfilación de la Expresión Génica , Masculino , Polimorfismo de Nucleótido Simple/genética , Especificidad de la Especie , Sintenía/genética
15.
Genome Biol Evol ; 16(1)2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38245839

RESUMEN

Since the commercialization of brine shrimp (genus Artemia) in the 1950s, this lineage, and in particular the model species Artemia franciscana, has been the subject of extensive research. However, our understanding of the genetic mechanisms underlying various aspects of their reproductive biology, including sex determination, is still lacking. This is partly due to the scarcity of genomic resources for Artemia species and crustaceans in general. Here, we present a chromosome-level genome assembly of A. franciscana (Kellogg 1906), from the Great Salt Lake, United States. The genome is 1 GB, and the majority of the genome (81%) is scaffolded into 21 linkage groups using a previously published high-density linkage map. We performed coverage and FST analyses using male and female genomic and transcriptomic reads to quantify the extent of differentiation between the Z and W chromosomes. Additionally, we quantified the expression levels in male and female heads and gonads and found further evidence for dosage compensation in this species.


Asunto(s)
Artemia , Cromosomas Sexuales , Animales , Femenino , Masculino , Artemia/genética , Artemia/metabolismo , Cromosomas Sexuales/genética , Diferenciación Sexual/genética , Mapeo Cromosómico , Genoma
16.
G3 (Bethesda) ; 13(8)2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37259621

RESUMEN

The regulatory architecture of gene expression is known to differ substantially between sexes in Drosophila, but most studies performed so far used whole-body data and only single crosses, which may have limited their scope to detect patterns that are robust across tissues and biological replicates. Here, we use allele-specific gene expression of parental and reciprocal hybrid crosses between 6 Drosophila melanogaster inbred lines to quantify cis- and trans-regulatory variation in heads and gonads of both sexes separately across 3 replicate crosses. Our results suggest that female and male heads, as well as ovaries, have a similar regulatory architecture. On the other hand, testes display more and substantially different cis-regulatory effects, suggesting that sex differences in the regulatory architecture that have been previously observed may largely derive from testis-specific effects. We also examine the difference in cis-regulatory variation of genes across different levels of sex bias in gonads and heads. Consistent with the idea that intersex correlations constrain expression and can lead to sexual antagonism, we find more cis variation in unbiased and moderately biased genes in heads. In ovaries, reduced cis variation is observed for male-biased genes, suggesting that cis variants acting on these genes in males do not lead to changes in ovary expression. Finally, we examine the dominance patterns of gene expression and find that sex- and tissue-specific patterns of inheritance as well as trans-regulatory variation are highly variable across biological crosses, although these were performed in highly controlled experimental conditions. This highlights the importance of using various genetic backgrounds to infer generalizable patterns.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Femenino , Masculino , Drosophila melanogaster/genética , Drosophila/genética , Gónadas , Ovario , Regulación de la Expresión Génica
17.
Evolution ; 77(11): 2504-2511, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37738212

RESUMEN

Sex chromosomes have evolved independently multiple times, but why some are conserved for more than 100 million years whereas others turnover rapidly remains an open question. Here, we examine the homology of sex chromosomes across nine orders of insects, plus the outgroup springtails. We find that the X chromosome is likely homologous across insects and springtails; the only exception is in the Lepidoptera, which has lost the X and now has a ZZ/ZW sex-chromosome system. These results suggest the ancestral insect X chromosome has persisted for more than 450 million years-the oldest known sex chromosome to date. Further, we propose that the shrinking of gene content the dipteran X chromosome has allowed for a burst of sex-chromosome turnover that is absent from other speciose insect orders.


Asunto(s)
Evolución Molecular , Lepidópteros , Animales , Cromosoma X , Cromosomas Sexuales , Insectos/genética , Lepidópteros/genética
18.
Evol Lett ; 7(1): 4-12, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37065438

RESUMEN

Differentiated X chromosomes are expected to have higher rates of adaptive divergence than autosomes, if new beneficial mutations are recessive (the "faster-X effect"), largely because these mutations are immediately exposed to selection in males. The evolution of X chromosomes after they stop recombining in males, but before they become hemizygous, has not been well explored theoretically. We use the diffusion approximation to infer substitution rates of beneficial and deleterious mutations under such a scenario. Our results show that selection is less efficient on diploid X loci than on autosomal and hemizygous X loci under a wide range of parameters. This "slower-X" effect is stronger for genes affecting primarily (or only) male fitness, and for sexually antagonistic genes. These unusual dynamics suggest that some of the peculiar features of X chromosomes, such as the differential accumulation of genes with sex-specific functions, may start arising earlier than previously appreciated.

19.
BMC Genomics ; 13: 109, 2012 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-22439699

RESUMEN

BACKGROUND: Drosophila albomicans is a unique model organism for studying both sex chromosome and B chromosome evolution. A pair of its autosomes comprising roughly 40% of the whole genome has fused to the ancient X and Y chromosomes only about 0.12 million years ago, thereby creating the youngest and most gene-rich neo-sex system reported to date. This species also possesses recently derived B chromosomes that show non-Mendelian inheritance and significantly influence fertility. METHODS: We sequenced male flies with B chromosomes at 124.5-fold genome coverage using next-generation sequencing. To characterize neo-Y specific changes and B chromosome sequences, we also sequenced inbred female flies derived from the same strain but without B's at 28.5-fold. RESULTS: We assembled a female genome and placed 53% of the sequence and 85% of the annotated proteins into specific chromosomes, by comparison with the 12 Drosophila genomes. Despite its very recent origin, the non-recombining neo-Y chromosome shows various signs of degeneration, including a significant enrichment of non-functional genes compared to the neo-X, and an excess of tandem duplications relative to other chromosomes. We also characterized a B-chromosome linked scaffold that contains an actively transcribed unit and shows sequence similarity to the subcentromeric regions of both the ancient X and the neo-X chromosome. CONCLUSIONS: Our results provide novel insights into the very early stages of sex chromosome evolution and B chromosome origination, and suggest an unprecedented connection between the births of these two systems in D. albomicans.


Asunto(s)
Cromosomas de Insectos/genética , Drosophila/genética , Evolución Molecular , Genoma de los Insectos/genética , Recombinación Genética/genética , Cromosoma X/genética , Cromosoma Y/genética , Animales , Duplicación Cromosómica/genética , Femenino , Masculino , Anotación de Secuencia Molecular , Filogenia
20.
Genetics ; 222(2)2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35977389

RESUMEN

Eurasian brine shrimp (genus Artemia) have closely related sexual and asexual lineages of parthenogenetic females, which produce rare males at low frequencies. Although they are known to have ZW chromosomes, these are not well characterized, and it is unclear whether they are shared across the clade. Furthermore, the underlying genetic architecture of the transmission of asexuality, which can occur when rare males mate with closely related sexual females, is not well understood. We produced a chromosome-level assembly for the sexual Eurasian species Artemia sinica and characterized in detail the pair of sex chromosomes of this species. We combined this new assembly with short-read genomic data for the sexual species Artemia sp. Kazakhstan and several asexual lineages of Artemia parthenogenetica, allowing us to perform an in-depth characterization of sex-chromosome evolution across the genus. We identified a small differentiated region of the ZW pair that is shared by all sexual and asexual lineages, supporting the shared ancestry of the sex chromosomes. We also inferred that recombination suppression has spread to larger sections of the chromosome independently in the American and Eurasian lineages. Finally, we took advantage of a rare male, which we backcrossed to sexual females, to explore the genetic basis of asexuality. Our results suggest that parthenogenesis is likely partly controlled by a locus on the Z chromosome, highlighting the interplay between sex determination and asexuality.


Asunto(s)
Artemia , Partenogénesis , Animales , Artemia/genética , Femenino , Genoma , Masculino , Partenogénesis/genética , Reproducción/genética , Cromosomas Sexuales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA