RESUMEN
BACKGROUND: Bipolar disorder (BD) and schizophrenia (SZ) are the two main mental disorders with unknown etiology that significantly impact individuals' quality of life. The potential pro-inflammatory role in their pathogenesis is postulated and Human Endogenous Retrovirus W (HERV-W) is an emerging candidate to modulate this pathogenic finding. HERVs, ancient retroviruses in the human genome, may play roles in inflammation and disease pathogenesis. Despite HERVs' involvement in autoimmune diseases, their influence on mental disorders remains underexplored. Therefore, the aim of this study was to assess the level of HERV-W-env expression and the systemic inflammatory profile through the concentration of IL-2, IL-4, IL-6, IL-10, TNF-α and INF-γ cytokines in BD and SZ patients. RESULTS: All participants showed HERV-W-env expression, but its expression was higher in mental disorder patients (p < 0.01) than in control. When separated, SZ individuals exhibited higher HERV-W expression than the control group (p < 0.01). Higher serum levels of TNF-α and IL-10 were found in BD (p = 0.0001 and p = 0.001, respectively) and SZ (p = 0.01) and p = 0.01, respectively) than in the control group, while SZ showed decreased levels IFN-γ and IL-2 as compared to controls (p = 0.05) and BD patients (p = 0.05), respectively. Higher TNF-α/IL-4 and TNF-α/IL-10 ratios, and lower IFN-γ/IL-10 were observed in BD and SZ patients than controls. Significant negative correlation between HERV-W-env expression and IL-10 (r=-0.47 p < 0.05), as well as positive correlations between HERV-W-env expression and TNF-α/IL-10 or IFN-γ/IL-10 ratios (r = 0.48 p < 0.05 and r = 0.46 p < 0.05, respectively) were found in BD patients. CONCLUSION: These findings suggest not only a potential link between HERV-W-env expression both in BD and SZ, but also a possible involvement of systemic inflammatory status in BD patients.
Asunto(s)
Trastorno Bipolar , Citocinas , Retrovirus Endógenos , Esquizofrenia , Regulación hacia Arriba , Humanos , Esquizofrenia/virología , Esquizofrenia/inmunología , Trastorno Bipolar/inmunología , Trastorno Bipolar/virología , Retrovirus Endógenos/genética , Masculino , Adulto , Femenino , Citocinas/sangre , Persona de Mediana Edad , Inflamación , Interleucina-10/genética , Interleucina-10/sangre , Interferón gamma/sangre , Factor de Necrosis Tumoral alfa/sangre , Factor de Necrosis Tumoral alfa/genética , Adulto JovenRESUMEN
Atopic dermatitis (AD) is a common relapsing inflammatory skin disorder characterized by immune-mediated inflammation and epidermal barrier dysfunction. The pathogenesis of AD is multifactorial and has not been fully elucidated to date. This study aimed to evaluate whether serum IgG from adult AD patients could modulate the thymic maturation of IL-22-producing T cells and CLA+ T cells of non-atopic infants. Given that miRNAs regulate immune response genes, we evaluated whether miRNA expression is also altered in cultured thymocytes. Thymocytes were cultured with purified IgG from AD patients or control conditions (mock, Intravenous-IgG (IVIg), non-atopic IgG, or atopic non-AD IgG). Using flow cytometry analysis, we assessed the expression of CLA and intracellular levels of IL-4, IFN-γ, and IL-22 on double-positive T cells (DP T), CD4 T cells, or CD8 T cells. We also investigated the frequency of IgG isotypes and their direct interaction with the thymic T cells membrane. The miRNA profiles were evaluated by the Illumina small RNA-seq approach. MiRNA target gene prediction and enrichment analyses were performed using bioinformatics. Increased frequencies of IL-22 and CLA+ producing CD4+ T cells cultured with IgG of AD patients was seen in non-atopic infant thymocytes compared to all control conditions. No alterations were observed in the frequency of IgG isotypes among evaluated IgG pools. Evidence for a direct interaction between IgG and thymic DP T, CD4 T, and CD8 T cells is presented. The small RNA-seq analysis identified ten mature miRNAs that were modulated by AD IgG compared to mock condition (miR-181b-5p, hsa-miR-130b-3p, hsa-miR-26a-5p, hsa-miR-4497, has-miR-146a, hsa-let-7i-5p, hsa-miR-342-3p, has-miR-148a-3p, has-miR-92a and has-miR-4492). The prediction of the targetome of the seven dysregulated miRNAs between AD and mock control revealed 122 putative targets, and functional and pathway enrichment analyses were performed. Our results enhance our understanding of the mechanism by which IgG can collaborate in thymic T cells in the setting of infant AD.
Asunto(s)
Dermatitis Atópica , MicroARNs , Adulto , Linfocitos T CD4-Positivos , Epigénesis Genética , Humanos , Inmunoglobulina G/genética , Interleucinas , MicroARNs/genética , Interleucina-22RESUMEN
γδT cells mature in the human thymus, and mainly produce IL-17A or IFN-γ, but can also produce IL-22 and modulate a variety of immune responses. Here, we aimed to evaluate whether IgG from AD patients (AD IgG) can functionally modulate thymic nonatopic γδT cells. Thymic tissues were obtained from 12 infants who had not had an atopic history. Thymocytes were cultured in mock condition, or in the presence of either AD IgG or therapeutic intravenous IgG (IVIg). Following these treatments, intracellular cytokine production, phenotype, and microRNA expression profiles were investigated. AD IgG could downregulate α4ß7, upregulate CLA, and induce the production of IFN-γ, IL-17, and IL-22 in γδT cells. Although both AD IgG and IVIg could directly interact with γδT cell membranes, AD IgG could reduce γδT cell apoptosis. AD IgG could upregulate nine miRNAs compared to IVIg, and six when compared to the mock condition. In parallel, some miRNAs were downregulated. Target gene prediction and functional analysis indicated that some target genes were enriched in the negative regulation of cellular transcription. This study shows that AD IgG influences the production of IL-17 and IL-22 by intrathymic nonatopic γδT cells, and demonstrates epigenetic implications mediated by miRNAs.
Asunto(s)
Dermatitis Atópica , MicroARNs , Dermatitis Atópica/metabolismo , Epigénesis Genética , Humanos , Inmunoglobulinas/inmunología , Inmunoglobulinas Intravenosas , Recién Nacido , Interleucina-17 , Interleucinas , MicroARNs/genética , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Timo , Interleucina-22RESUMEN
The mechanisms through which maternal immunization can modulate offspring thymic maturation of lymphocytes are not fully understood. Here, we aimed to evaluate whether maternal OVA-immunization can inhibit the maturation of IL-17-producing γδT cells in offspring thymus, and if this mechanism has epigenetic implications mediated by microRNAs (miRNAs) expression. Wild-type (WT) C57BL/6 females were immunized with OVA in Alum or Alum alone and were mated with normal WT males. Evaluating their offspring thymus at 3 or 20 days old (d.o.), we observed that maternal OVA immunization could inhibit the thymic frequency of offspring CD27- and IL-17+ γδT cells at the neonatal and until 20 days old. Furthermore, we evaluated the expression of function-related γ and δ variable γδTCR chains (Vγ1, Vγ2, Vγ3, Vδ4, and Vδ6.3), observing that maternal OVA-immunization inhibits Vγ2 chains expression. The small RNAs (sRNAs), particularly miRNAs, and messenger RNAs (mRNA) expression profiles by pools of thymus tissue samples (from 9 to 11 mice) from offspring OVA-immunized or Alum-immunized mothers were analyzed via Illumina sequencing platform and bioinformatics approaches. Using a fold change >4, our results showed that seven miRNAs (mmu-miR-126a-3p, 101a-3p, 744-3p,142-5p, 15a-5p, 532-5p, and 98-5p) were differentially expressed between both groups. Ten target genes were predicted to interact with the seven selected miRNAs. There were no enriched categories of gene ontology functional annotation and pathway enrichment analysis for the target genes. Interestingly, four of the identified miRNAs (mmu-miR-15a, mmu-miR-101 mmu-miR-126, and mmu-miR-142) are related to IL-17 production. Our data is of significance because we demonstrate that maternal immunization can modulate offspring thymic maturation of IL-17-producing γδT cells possibly by an epigenetic mechanism mediated by miRNAs.
Asunto(s)
Hipersensibilidad/etiología , Inmunización , Linfocitos Intraepiteliales , Exposición Materna , Timo/inmunología , Animales , Femenino , Interleucina-17/metabolismo , Ratones Endogámicos C57BL , MicroARNs/metabolismoRESUMEN
The regulation of offspring allergy development mediated by maternal immunization was evidenced by several groups, and this mechanism seems to involve the induction of regulatory T cells (Tregs) on offspring. Here, we aimed to evaluate whether the effect of maternal immunization on offspring Tregs occurs as a result of peripheral or central modulation. Briefly, C57BL/6 female mice were immunized with OVA in Alum or Alum alone and boosted with OVA in saline or saline only after 10 and 20 days. Non-immunized offspring serum, thymus and spleen were evaluated at 3 or 20 days old, and some groups of pups were submitted to neonatal OVA-immunization protocol for the subsequent evaluation of antibody production and allergic response. Our experimental protocol could be validated because maternal OVA-immunization inhibited offspring allergic response as evidenced by the suppression of offspring IgE production and allergic lung inflammation. Interestingly, maternal immunization reduced the frequency of offspring thymic Tregs with an opposite effect on spleen Tregs. Furthermore, after neonatal immunization, the frequency of lung-infiltrated Tregs was also augmented on offspring from immunized mothers. In conclusion, maternal OVA-immunization can inhibit the thymic maturation of offspring Tregs without implications on peripheral Tregs induction and allergy inhibition.
Asunto(s)
Hipersensibilidad/inmunología , Neumonía/inmunología , Bazo/inmunología , Linfocitos T Reguladores/inmunología , Timo/inmunología , Animales , Animales Recién Nacidos , Formación de Anticuerpos , Modelos Animales de Enfermedad , Femenino , Tolerancia Inmunológica , Inmunización , Inmunoglobulina E/metabolismo , Exposición Materna/efectos adversos , Intercambio Materno-Fetal , Ratones , Ratones Endogámicos C57BL , EmbarazoRESUMEN
BACKGROUND: IL-17-producing B cells can be identified in both mice and human and were named B17 cells. The role of B17 cells still needs to be elucidated and its inflammatory or regulatory functions remain controversial. OBJECTIVE: We evaluate the effect of maternal immunization with OVA on offspring B cells that produces IL-17 and can show a regulatory potential by IL-10 production. METHODS: C57BL/6 WT, IL-10-/- or CD28-/- female mice were immunized or not with OVA in Alum, and immunized females were boosted after 10 and 20 days. Immunized and non-immunized females were mated, and pups from both groups were evaluated at 3 or 20 days old (d.o.). Some offspring from the aforementioned two groups were immunized with OVA at 3 d.o., boosted after 10 days and evaluated at 20 d.o. RESULTS: Maternal immunization with OVA induced offspring B cells to produce IL-17 at higher intensity compared to the control group of offspring at 3 d.o. This effect was maintained until 20 d.o. and even after neonatal immunization with OVA. The co-production of IL-10 on offspring IL-17+B cells is up-regulated in response to maternal immunization with OVA. Maternal immunization with OVA on IL-10-/- mice reveals reduced percentage and mean of fluorescence intensity of IL-17 on B cells of offspring. CONCLUSION: Preconception OVA immunization can induce offspring B cells that produce IL-17 at higher intensity and co-produce mainly IL-10. This could be the reason why B17 cells had been described in the literature with controversial roles upon their regulatory function.
Asunto(s)
Subgrupos de Linfocitos B/inmunología , Hipersensibilidad/prevención & control , Inmunidad Materno-Adquirida/inmunología , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Alérgenos/inmunología , Animales , Subgrupos de Linfocitos B/metabolismo , Células Cultivadas , Femenino , Hipersensibilidad/inmunología , Inmunización/métodos , Interleucina-10/inmunología , Interleucina-17/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Ovalbúmina/inmunología , Cultivo Primario de CélulasRESUMEN
INTRODUCTION: In the last few years our group has been studying the mechanisms involved in the inhibition of allergy in offspring mediated by preconception maternal immunization, but these mechanisms are not fully understood. Such mechanisms that we have studied aimed at the passive transfer of maternal antibodies and its influence on offspring immune status. AIM OF THE STUDY: To evaluate whether maternal immunization could modulate intracellular Th1/Th2 profiles in offspring. MATERIAL AND METHODS: C57BL/6 female wild type mice (WT), interleukin (IL)-10-/- or CD28-/- mice were immunized or not with ovalbumin (OVA) and were mated with respective lineage males and offspring were evaluated at 3 days old (d.o.), 20 d.o., or 20 d.o. after neonatal immunization. RESULTS: Preconception OVA immunization induced a marked reduction in IL-4 secretion by TCD4+ cells of WT offspring when compared with offspring from non-immunized mothers. The maternal immunization of IL-10-/- mice induced an increase in the TCD4+IL-4+ percentage in offspring and a reduction in TCD4+IFN-γ+ cells. The maternal immunization in CD28-/- mice induced augment IL-4 intensity in 3 and 20 d.o. offspring TCD4+ cells. CONCLUSIONS: Our results reveal that maternal immunization with OVA can down-regulate the Th2 pattern in offspring and this regulation is dependent on IL-10 and B/T cell collaboration.
RESUMEN
Since the 1950s decade, it has been suggested that a naturally produced or induced repertoire of immunoglobulin G (IgG) idiotypes may exert some immunoregulatory functions. In the last decades, some more advanced theories have suggested that the repertoire of IgG idiotypes may influence the development or control of some atopic diseases. In atopic dermatitis (AD), some evidence indicated that the IgG repertoire obtained from these patients could effectively mediate regulatory functions on thymic and peripheral CD4+ and CD8+ T cells. Furthermore, some recent clinical trials have corroborated the hypothesis that IgG from AD patients can exert regulatory functions in vivo. Here, we revised some historical aspects that yield current approaches developed in vitro and in vivo to elucidate a recently proposed theory termed "hooks without bait" that can strengthen the broad spectrum of research about evaluating different sets of IgG idiotypes and determine their immunological effects.
RESUMEN
The presence of genetic mutations in HIV poses a significant challenge, potentially leading to antiretroviral resistance and hampering therapeutic development. The Brazilian population has presented variations in the HIV envelope V3 loop gene, especially the GWGR motif. This motif has been linked to reduced transmission potential and slower CD4+ T cell decline. This study aimed to assess clinical outcomes in patients with HIV-1 infected with strains containing the GWGR motif compared with those without it during long-term cART. A cohort of 295 patients with HIV was examined for the GWGR motif presence in the V3 loop. A total of 58 samples showed the GWGR signature, while 237 had other signatures. Multifactorial analyses showed no significant differences in demographic characteristics, CD4+ cell count, AIDS progression, or mortality between GWGR carriers and others. However, the mean interval between the first positive HIV test and the initial AIDS-defining event was more than two times longer for women carrying the GWGR signature (p = 0.0231). We emphasize the positive impact of cART on HIV/AIDS treatment, including viral suppression, CD4+ cell preservation, and immune function maintenance. Although no significant differences were found during cART, residual outcomes reflecting adherence challenges were observed between diagnosis and the first AIDS-defining event. The previously described outcomes, highlighting statistically significant differences between individuals carrying the GPGR motif compared with those with the Brazilian GWGR motif, may be directly linked to the natural progression of infection before advancements in cART. Presently, these physicochemical aspects may no longer hold the same relevance.
Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Femenino , VIH-1/genética , VIH-1/efectos de los fármacos , Masculino , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Adulto , Recuento de Linfocito CD4 , Fármacos Anti-VIH/uso terapéutico , Persona de Mediana Edad , Resultado del Tratamiento , Secuencias de Aminoácidos , Carga Viral , Proteína gp120 de Envoltorio del VIH/genética , Estudios de Cohortes , Brasil , Terapia Antirretroviral Altamente Activa , Progresión de la Enfermedad , MutaciónRESUMEN
Studies about thymic B cells are scarce in the literature, but it was suggested that they can exert modulatory and regulatory functions on the immune system. Thymic B cells can play some role in regulating the most frequent allergic background worldwide, the atopy induced by the mite Dermatophagoides pteronyssinus (Der p). Here, we aimed to evaluate if the polyclonal IgG repertoire produced by Der p-atopic individuals can influence the homing and cytokine profile of human thymic B derived from non-atopic children aged less than seven days. With this purpose, we produced polyclonal IgG formulations and cultivated human thymocytes in their presence. We also assessed IgG subclasses and the direct interaction of IgG with thymic B cell membranes. Our results could demonstrate that Der p-atopic IgG could not reduce the expression of α4ß7 homing molecule as observed in response to the other IgG formulations and could reduce the frequency of IFN-γ- and IL-9-producing thymic B cells compared to the mock condition. Der p-atopic IgG could also induce thymic IL-10-producing B cells compared to control conditions. The IgG derived from Der p-atopic individuals failed to diminish the population of IL-13-producing thymic B cells, unlike the reduction observed with other IgG formulations when compared to the mock condition. All IgG formulations had similar levels of IgG subclasses and directly interacted with thymic B cell membranes. Finally, we performed experiments using peripheral non-atopic B cells where IgG effects were not observed. In conclusion, our observation demonstrates that IgG induced in allergic individuals can modulate non-atopic thymic B cells, potentially generating thymic B cells prone to allergy development, which seems to not occur in mature B cells.
Asunto(s)
Hipersensibilidad Inmediata , Hipersensibilidad , Animales , Niño , Humanos , Interleucina-10 , Dermatophagoides pteronyssinus , Interleucina-9 , Interferón gamma/metabolismo , Inmunoglobulina G , Fenotipo , Antígenos Dermatofagoides , AlérgenosRESUMEN
Background: Periodontitis is a chronic inflammatory condition that affects the supporting tissues of the teeth, and can lead to serious complications such as tooth loss and systemic health problems, including diabetes, which have a bidirectional relationship with periodontitis. Circulating microparticles originate from different cell types after stimuli such as activation or apoptosis. Interleukins are related to processes in the regulation of the immune response, inflammation, and cell growth. This study aimed to evaluate circulating microparticles as well as interleukins in the plasma, at baseline and 1 month after the end of the non-surgical periodontal treatment. Methods: Samples were collected from 45 patients, with moderate to severe periodontitis with diabetes (N = 25) and without diabetes (N = 20). Microparticles were evaluated in the platelet-poor plasma by flow cytometer. Cytokine levels were evaluated by the enzyme immunoabsorption assay (ELISA). Results: Higher levels of the pro-inflammatory cytokines were found in the group with diabetes compared to the non-diabetic group both at baseline and 1 month after the end of the treatment. A higher IL-6/IL-10 ratio was found in patients with diabetes compared to the group without diabetes at T0 and T1, whereas an increased IFN-γ/IL-10 ratio was only found at T1 in patients with diabetes in comparison to the group without diabetes. In the group with diabetes, it was verified positive correlations between IL-10 and IL-6 or IFN-γ and a negative correlation between IL-6 and PMP, at T0; in contrast, in the T1, negative correlations were found between TNF-α and IL-10 or PMP. Besides, at T0, it was evidenced positive correlations both between circulating TNF-α and IL-6, and IL-10 and EMP, as well as a negative correlation between IL-10 and PMP in the group with diabetes. In addition, it was observed in T1 positive correlations between levels of TNF-α and IL-6, IFN-γ, or IL-10, and between PMP and IFN-γ, and between EMP and IL-6, TNF-α and IFN-γ in this group. Conclusion: The results suggest a modulatory effect of the periodontitis associated with diabetes, as well as the periodontal treatment, in the systemic inflammatory status of the participants of the study.
RESUMEN
The regulatory T (Treg) cells constitute a functionally defined subpopulation of T cells that modulate the immune system and maintain immune tolerance through suppression of the development of autoimmune responses to self-antigens and allergic reactions to external antigens. Reduction in the number or function of Treg cells has been suggested as a key immune abnormality underlying the development of autoimmune and allergic diseases. In vitro studies have demonstrated that purified polyvalent immunoglobulin G (IgG) from multiple healthy blood donors can exert immunomodulatory effects on Treg cells. Incubation of polyvalent human IgG with purified CD4+CD25high T cells increased the intracellular expression of interleukin (IL)-10. Intravenous administration of polyvalent human IgG induced significant expansions of CD4+ Foxp3+ Treg cells and clinical improvements in patients with autoimmune diseases. In human clinical trials, intramuscular administration of autologous total IgG significantly increased the percentage of IL-10-producing CD4+ Treg cells in the peripheral blood of healthy subjects and provided significant clinical improvements in patients with atopic dermatitis. These results suggest a clinical usefulness of polyvalent IgG-induced activation of Treg cells in human subjects. This review proposes a new hypothesis for immune tolerance mechanism by integrating the pre-existing "idiotypic network theory" and "Treg cell theory" into an "anti-idiotypic Treg cell theory." Based on this hypothesis, an "active anti-idiotypic therapy" for allergic and autoimmune diseases using autologous polyvalent IgG (as immunizing antigens) is suggested as follows: (1) Intramuscular or subcutaneous administration of autologous polyvalent IgG produces numerous immunogenic peptides derived from idiotypes of autologous IgG through processing of dendritic cells, and these peptides activate anti-idiotypic Treg cells in the same subject. (2) Activated anti-idiotypic Treg cells secrete IL-10 and suppress Th2 cell response to allergens and autoimmune T cell response to self-antigens. (3) These events can induce a long-term clinical improvements in patients with allergic and autoimmune diseases. Further studies are needed to evaluate the detailed molecular mechanism underlying polyvalent IgG-induced Treg cell activation and the clinical usefulness of this immunomodulatory therapy for autoimmune and allergic diseases.
Asunto(s)
Enfermedades Autoinmunes , Hipersensibilidad , Humanos , Linfocitos T Reguladores , Interleucina-10/metabolismo , Inmunoglobulina G/metabolismo , Tolerancia Inmunológica , Alérgenos , Hipersensibilidad/metabolismo , Enfermedades Autoinmunes/terapia , Enfermedades Autoinmunes/metabolismo , Autoantígenos/metabolismoRESUMEN
Atopic dermatitis (AD) is a chronic disease related to skin disorders that affect individuals in their childhood and can persist or start in adulthood. Patients affected by this disease commonly show skin lesions on the body surface (mainly on the upper and lower limbs) and allergic rhinitis or asthma crises. Looking at the disease from a molecular perspective, the major cytokines involved in inflammatory skin diseases, not only AD, include IL-4, IL-17, IFN-γ and IL-10. Although they can produce these cytokines and infiltrate the affected epithelia in patients with AD, γδ T cells are still almost unexplored. In this update, we briefly discuss the involvement of IL-4, IL-17, IFN-γ and IL-10 in the pathophysiology of AD and the possible role of γδ T cells during the inflammatory process.
Asunto(s)
Dermatitis Atópica , Enfermedades de la Piel , Niño , Humanos , Citocinas , Dermatitis Atópica/patología , Interferón gamma , Interleucina-10 , Interleucina-17 , Interleucina-4 , Linfocitos T/patologíaRESUMEN
Lower levels of peripheral mucosal-associated invariant T (MAIT) cells have been observed in the peripheral blood of patients with severe coronavirus disease 2019 (COVID-19). Following on from previous research into the effect of the IgG repertoire on human lymphocytes, the present study aimed to evaluate if immunoglobulin G (IgG) antibodies obtained from patients with mild or severe COVID-19 contribute to these effects on MAIT cells. Culture experiments were performed using healthy human peripheral blood mononuclear cells (PBMCs) and different repertoires of IgG obtained from patients with COVID-19 as a mild or severe disease and compared with mock, healthy control or therapeutic IgG conditions. The results indicate that the IgG repertoire induced during the development of mild and severe COVID-19 has, per se, the in vitro potential to reduce the frequency of MAIT cells and the production of IFN-γ by the MAIT cell population in PBMCs from healthy individuals. In conclusion, the results of the present study indicate that IgG in patients with severe COVID-19 may participate in the reduction of peripheral MAIT cell frequency and hinder the antiviral activity of these cells.
RESUMEN
Human T-lymphotropic virus 1 (HTLV-1) infected individuals remain as asymptomatic carriers (ACs) or can develop the chronic neurological disorder HTLV-1-associated myelopathy/Tropical Spastic Paraparesis (HAM/TSP) or the adult T-cell leukemia/lymphoma (ATLL), and the immunological mechanisms involved in this pathologies need to be elucidated. Recently, it has been demonstrated that induced or naturally developed IgG repertoires obtained from different groups of donors, grouped by immune status, can modulate human T and B cell functions. Here we aimed to evaluate if the IgG obtained from HTLV-1-infected ACs, HAM/TSP, and ATLL patients can differentially modulate the production of cytokines by human T and B cells. With this purpose, we cultured PBMCs with IgG purified from ACs, HAM/TSP, or ATLL donors and evaluated the frequency and intracellular cytokine production by flow cytometry. Our results indicate that IgG from HAM/TSP patients could induce an augment of IL-17-producing CD4+ T cells, reduce the frequency of IL-4-producing CD4+ T cells, increase IFN-γ-producing CD8+ T cells, and reduce IL-4-producing CD8+ T cells. IgG from ATLL could reduce the frequency of IL-4-producing CD4+ T cells, similarly to IgG from HAM/TSP /TSP, and could reduce the frequency of IFN-γ-producing γδT cells without influence on IL-17- and IL4-producing γδT and could reduce the frequency of IL-10- producing B cells. Finally, IgG from both HAM/TSP and ATLL patients could reduce the frequency of IFN-γ producing B cells. In conclusion, these results suggest that these preparations are active, partly overlapping in their effects, and able to elicit distinct effects on target populations.
RESUMEN
Here, we describe the bacterial diversity and physicochemical properties in freshwater samples from the surface and bottom layers of the Billings Reservoir, the largest open-air storage ecosystem in the São Paulo (Brazil) metropolitan area. Forty-four samples (22 from the surface and 22 from the bottom layers) were characterized based on 16S rRNA gene analysis using Illumina MiSeq. Taxonomical composition revealed an abundance of the Cyanobacteria phylum, followed by Proteobacteria, which were grouped into 1903 and 2689 different genera in the surface and the deep-water layers, respectively. Chroobacteria, Actinobacteria, Betaproteobacteria, and Alphaproteobacteria were the most dominant classes. The Shannon diversity index was in the range of 2.3-5.39 and 4.04-6.86 in the surface and bottom layers, respectively. Flavobacterium was the most predominant pathogenic genus. Temperature and phosphorus concentrations were among the most influential factors in shaping the microbial communities of both layers. Predictive functional analysis suggests that the reservoir is enriched in motility genes involved in flagellar assembly. The overall results provide new information on the diversity composition, ecological function, and health risks of the bacterial community detected in the Billings freshwater reservoir. The broad bacterial diversity indicates that the bacterioplankton communities in the reservoir were involved in multiple essential environmental processes.
RESUMEN
Innate lymphoid cells (ILCs) are classified into distinct subsets termed ILC1, ILC2, and ILC3 cells. The existing literature lacks evidence identifying ILCs and their subsets in the human thymus but already demonstrates that they can exert several functions in regulating immune responses. Furthermore, it was already described that IgG's repertoires could modulate lymphocytes' maturation in the human thymus. Here we aimed to identify ILCs subsets in the human thymus and provide insight into the possible modulatory effect of purified IgG on these cells. Thymic tissues were obtained from 12 infants without an allergic background (non-atopic), and a literature-based peripheral ILCs staining protocol was used. Purified IgG was obtained from non-atopic individuals (n-At), atopic individuals reactive to allergens non-related to dust mites (nr-At), and atopic individuals reactive to the mite Dermatophagoides pteronyssinus (Derp-At). As with all tissues in which they have already been detected, thymic ILCs are rare, but we could detect viable ILCs in all tested tissues, which did not occur with the ILC1 subset. ILC2 and ILC3 NKp44+ subsets could be detected in all evaluated thymus, but ILC3 NKp44- subset could not. Next, we observed that Derp-At IgG could induce the expression of ILC2 phenotype, higher levels of IL-13, and lower levels of IL-4 when compared to IgG purified from non-atopic or non-related atopic (atopic to allergens excluding dust mites) individuals. These results contribute to the elucidation of human thymic ILCs and corroborate emerging evidence about IgG's premature effect on allergy development-related human lymphocytes' modulation.
RESUMEN
A γδ T cell acquires functional properties in response to the gamma delta T cell receptor γδTCR signal strength during its development in the thymus. The elucidation of the potential ligands of γδ T cell receptors are of extreme importance; however, they are still not understood. Here we revise the actual state of the art of candidates to exert the function of γδTCR ligands, and propose a theoretical contribution about new potential ligands of γδTCRs, based on biological and hypothetical pieces of evidence in the literature. In conclusion, we hypothetically suggest a possible role of induced antibodies according to the individual's immune status, mainly of the IgG subclass, acting as γδTCR ligands. Considering that IgG production is involved in some essential immunotherapy protocols, and almost all vaccination protocols, our discussion opens a new and broad field to further exploration.
RESUMEN
Asthma is a chronic immunological disease affecting all age groups, but often starting in childhood. Although it has long been ascribed to a single pathology, recent studies have highlighted its heterogeneity due to the potential involvement of various pathogenic mechanisms. Here, we present our current understanding of the role of innate-like T (ILT) cells in asthma pathogenesis. These cells constitute a specific family mainly comprising γδT, invariant natural killer (iNKT) and mucosal-associated invariant (MAIT) T cells. They all share the ability to massively secrete a wide range of cytokines in a T-cell receptor (TCR)-dependent or -independent manner. ILT cells are prevalent in mucosal tissues, including airways, where their innate and adaptive immune functions consist primarily in protecting tissue integrity. However, ILT cells may also have detrimental effects leading to asthma symptoms. The immune mechanisms through which this pathogenic effect occurs will be discussed in this overview.