Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 29(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38930880

RESUMEN

Miniaturized weak affinity chromatography is emerging as an interesting alternative to conventional biophysical tools for performing fragment-screening studies in the context of fragment-based drug discovery. In order to push back the analytical limits, it is necessary not only to control non-specific interactions with chromatographic support, but also to adapt this methodology by comparing the results obtained on an affinity column to a control column. The work presented in this study focused on fragment screening that targets a model membrane protein, the adenosine A2A receptor, embedded in nanodiscs (NDs) as biomimetic membranes. By studying the retention behavior of test fragment mixtures on supports modified with different types of NDs, we were able to determine the contribution of ND-related non-specific interactions, in particular the electrostatic effect of anionic phospholipids and the hydrophobic effect of neutral phospholipids. Different strategies for the preparation of control columns (empty NDs, orthosteric site blocking) were investigated and are presented for the first time. With these two types of control columns, the screening enabled the identification of two new fragments of AA2AR, which were confirmed by competition experiments and whose Kd values, estimated directly during the screening or after the competition experiments in frontal mode, were in good agreement.


Asunto(s)
Cromatografía de Afinidad , Nanoestructuras , Ligandos , Cromatografía de Afinidad/métodos , Nanoestructuras/química , Receptor de Adenosina A2A/química , Receptor de Adenosina A2A/metabolismo , Proteínas de la Membrana/química , Unión Proteica , Humanos , Fosfolípidos/química , Interacciones Hidrofóbicas e Hidrofílicas , Descubrimiento de Drogas/métodos
2.
Molecules ; 28(20)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37894592

RESUMEN

The identification of weak-affinity ligands targeting membrane proteins is of great interest in Fragment-Based Drug Design (FBDD). Recently, miniaturized weak affinity chromatography (WAC) has been proposed as a valuable tool to study interactions between small ligands and wild-type membrane proteins embedded in so-called nanodisc biomimetic membranes immobilized on GMA-co-EDMA monoliths in situ-synthesized in capillary columns (less than one microliter in volume). In this proof-of-concept study, the achievable affinity range was limited to medium affinity (low micromolar range). The present work investigates different strategies to extend the affinity range towards low affinities, either by increasing the density of membrane proteins on the chromatographic support or by reducing non-specific interactions with the monolith. The combination of the use of a new and more hydrophilic monolithic support (poly(DHPMA-co-MBA)) and a multilayer nanodisc grafting process (up to three layers) allows a significant increase in the membrane protein density by a more than three-fold factor (up to 5.4 pmol cm-1). Such an increase in protein density associated with reduced non-specific interactions makes it possible to extend the range of detectable affinity, as demonstrated by the identification and characterization of affinities of very low-affinity ligands (Kd values of several hundred micromolar) for the adenosine receptor AA2AR used as a model protein, which was not possible before. The affinity was confirmed by competition experiments.


Asunto(s)
Proteínas de la Membrana , Metilmetacrilatos , Cromatografía de Afinidad/métodos , Metilmetacrilatos/química , Diseño de Fármacos , Ligandos
3.
Anal Chim Acta ; 1261: 341227, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37147058

RESUMEN

We report an original methodology based on affinity chromatography coupled with mass spectrometry to decipher the complexity of dynamic combinatorial libraries (DCLs) of glycoclusters. Such libraries are intended to boost the design of potential therapeutic anti-infectious agents targeting Pseudomonas aeruginosa, which is responsible for numerous diseases, mostly found in hospitals as major a cause of nosocomial infections. Dynamic combinatorial chemistry provides a rapid access to an equilibrating mixture of glycocluster candidates through the formation of reversible covalent bonds under thermodynamic control. Identifying each molecule in the complex mixture overcomes challenges due to the dynamic process. Selection of glycoclusters candidates was first realized on a model lectin (Concanavalin A, ConA). Home-made affinity nanocolumns, containing covalently immobilized ConA and have volumes in the microliter range, were used to separate DCLs of glycoclusters with respect to their specific lectin binding properties under buffered aqueous conditions. Miniaturization facilitates the inline coupling with MS detection in such purely aqueous and buffered conditions and reduces target protein consumption. Monolithic lectin-affinity columns prepared by immobilization of ConA were first characterized using a known ligand. The amount of active binding immobilized lectin is 61 ± 5 pmol on 8.5-cm length column. We demonstrated the ability of our approach to evaluate individual dissociation constants of species directly in the complex mixture. The concept was then successfully applied to the screening of DCLs of more complex glycoclusters to identify (by mass spectrometry) and rank the ligands (by relative breakthrough curve delay) according to their affinity for the immobilized lectin in a single experiment.


Asunto(s)
Lectinas , Unión Proteica , Lectinas/química , Espectrometría de Masas , Concanavalina A/metabolismo , Cromatografía de Afinidad/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA