Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
ACS Pharmacol Transl Sci ; 6(12): 1851-1858, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38093844

RESUMEN

Cyclic guanosine monophosphate (cGMP) is a critical second messenger involved in various physiological processes, such as vasodilation and phototransduction. Its synthesis is stimulated by nitric oxide and natriuretic hormones, while its breakdown is mediated through highly regulated phosphodiesterase activities. cGMP metabolism has been targeted for the treatment of several diseases, including erectile dysfunction, hypertension, and heart failure. As more drugs are being sought, it will be critical to develop assays that accurately determine cGMP levels. Here, we present cGMP Lumit, a sensitive and specific bioluminescent assay to detect cGMP. We demonstrate the utility of the detection system in enzyme assays, cell-based assays, and high-throughput screening formats. It is anticipated that this assay will be of significant value to aid in further understanding the role of cGMP in physiology and support further drug discovery efforts toward the treatment of human disease.

2.
SLAS Discov ; 23(3): 242-254, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29239273

RESUMEN

The modification of a diverse array of substrates by Fe(II)/2-oxoglutarate-dependent dioxygenases is central to the modulation of distinct biological processes such as epigenetics, hypoxic signaling, and DNA/RNA repair. Of these, JumonjiC domain-containing histone lysine demethylases (JMJCs) and prolyl hydroxylases are potential drug targets due to their relevance to human diseases. Thus, assays to interrogate this enzyme superfamily are needed to identify selective and potent inhibitors as leads for drug development and that could also be useful research tools. Since succinate is a common product to all Fe(II)/2-oxoglutarate-dependent dioxygenase reactions, a method that detects succinate would be suitable to all members of this enzyme superfamily. We therefore developed a bioluminescent and homogenous succinate detection assay and validated its use with diverse sets of enzyme classes. We evaluated the substrate specificities of these enzymes, their apparent kinetic constants, and inhibition profiles and mode of action of reported and novel inhibitors. Our results indicate that succinate detection is a useful readout for the monitoring of enzymatic activities with distinct substrate entities, as well as for the discovery of novel inhibitors. By investigating a large number of Fe(II)/2-oxoglutarate-dependent enzymes, this method could have a significant impact on the field of dioxygenase research.


Asunto(s)
Dioxigenasas/metabolismo , Inhibidores Enzimáticos/farmacología , Compuestos Ferrosos/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Mediciones Luminiscentes/métodos , Ácido Succínico/metabolismo , Descubrimiento de Drogas/métodos , Humanos , Cinética , Especificidad por Sustrato
3.
SLAS Discov ; 22(4): 366-377, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27803177

RESUMEN

Cancer cell metabolism is a complex, dynamic network of regulated pathways. Interrogation of this network would benefit from rapid, sensitive techniques that are adaptable to high-throughput formats, facilitating novel compound screening. This requires assays that have minimal sample preparation and are adaptable to lower-volume 384-well formats and automation. Here we describe bioluminescent glucose, lactate, glutamine, and glutamate detection assays that are well suited for high-throughput analysis of two major metabolic pathways in cancer cells: glycolysis and glutaminolysis. The sensitivity (1-5 pmol/sample), broad linear range (0.1-100 µM), and wide dynamic range (>100-fold) are advantageous for measuring both extracellular and intracellular metabolites. Importantly, the assays incorporate rapid inactivation of endogenous enzymes, eliminating deproteinization steps required by other methods. Using ovarian cancer cell lines as a model system, the assays were used to monitor changes in glucose and glutamine consumption and lactate and glutamate secretion over time. Homogeneous formats of the lactate and glutamate assays were robust (Z' = 0.6-0.9) and could be multiplexed with a real-time viability assay to generate internally controlled data. Screening a small-compound library with these assays resulted in the identification of both inhibitors and activators of lactate and glutamate production.


Asunto(s)
Glucosa/análisis , Ácido Glutámico/análisis , Glutamina/análisis , Glucólisis , Ácido Láctico/análisis , Mediciones Luminiscentes , Línea Celular Tumoral , Femenino , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Ácido Láctico/metabolismo , Ovario/metabolismo , Ovario/patología , Sensibilidad y Especificidad
4.
Assay Drug Dev Technol ; 13(8): 456-65, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26383544

RESUMEN

Real-time continuous monitoring of cellular processes offers distinct advantages over traditional endpoint assays. A comprehensive representation of the changes occurring in live cells over the entire length of an experiment provides information about the biological status of the cell and informs decisions about the timing of treatments or the use of other functional endpoint assays. We describe a homogeneous, nonlytic, bioluminescent assay that measures cell viability in real time. This time-dependent measurement allowed us to monitor cell health for 72 h from the same test samples, distinguish differential cell growth, and investigate drug mechanism of action by analyzing time- and dose-dependent drug effects. The real-time measurements also allowed us to detect cell death immediately (>75% signal decrease within 15 min of digitonin addition), analyze drug potency versus efficacy, and identify cytostatic versus toxic drug effects. We screened an oncology compound library (Z' = 0.7) and identified compounds with varying activity at different time points (1.6% of the library showed activity within 3 h, whereas 35.4% showed a response by 47 h). The assay compared well with orthogonal endpoint cell viability assays and additionally provided data at multiple time points and the opportunity to multiplex assays on the same cells. To test the advantage of time-dependent measurements to direct optimal timing of downstream applications, we used the real-time cell viability assay to determine the ideal time to measure caspase activity by monitoring the onset of cell death and multiplexing a luminescent caspase activation assay on the same test samples.


Asunto(s)
Antineoplásicos/análisis , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Sistemas de Computación , Mediciones Luminiscentes/métodos , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Humanos , Células K562 , Bibliotecas de Moléculas Pequeñas/análisis , Bibliotecas de Moléculas Pequeñas/farmacología
5.
J Magn Reson ; 164(1): 84-91, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12932460

RESUMEN

The size limit for protein NMR spectroscopy in solution arises in large part from line broadening caused by slow molecular tumbling. One way to alleviate this problem is to increase the effective tumbling rate by reducing the viscosity of the solvent. Because proteins generally require an aqueous environment to remain folded, one approach has been to encapsulate hydrated proteins in reverse micelles formed by a detergent and to dissolve the encapsulated protein in a low-viscosity fluid. The high volatility of suitable low-viscosity fluids requires that the samples be prepared and maintained under pressure. We describe a novel apparatus used for the preparation of such samples. The apparatus includes a chamber for mixing the detergent with the low-viscosity solvent, a second chamber for mixing this with hydrated protein, and a 5-mm (o.d.) zirconium oxide NMR sample tube with shut-off valves designed to contain pressures on the order of 10 bar, sufficient for liquid propane. Liquids are moved from one location to another by introducing minor pressure differentials between two pressurization vessels. We discuss the operation of this apparatus and illustrate this with data on a 30-kDa protein complex (chymotrypsin:turkey ovomucoid third domain) encapsulated in reverse micelles of the detergent, sodium bis (2-ethylhexyl) sulfosuccinate, aerosol-ot (AOT), dissolved in liquid propane.


Asunto(s)
Quimotripsina/química , Espectroscopía de Resonancia Magnética/instrumentación , Espectroscopía de Resonancia Magnética/métodos , Micelas , Microquímica/instrumentación , Proteínas/química , Soluciones/química , Animales , Quimotripsina/metabolismo , Microquímica/métodos , Presión , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Pavos/metabolismo , Viscosidad
6.
Assay Drug Dev Technol ; 12(9-10): 514-26, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25506801

RESUMEN

Abstract The central role of nicotinamide adenine dinucleotides in cellular energy metabolism and signaling makes them important nodes that link the metabolic state of cells with energy homeostasis and gene regulation. In this study, we describe the implementation of cell-based bioluminescence assays for rapid and sensitive measurement of those important redox cofactors. We show that the sensitivity of the assays (limit of detection ∼0.5 nM) enables the selective detection of total amounts of nonphosphorylated or phosphorylated dinucleotides directly in cell lysates. The total amount of NAD+NADH or NADP+NADPH levels can be detected in as low as 300 or 600 cells/well, respectively. The signal remains linear up to 5,000 cells/well with the maximum signal-to-background ratios ranging from 100 to 200 for NAD+NADH and from 50 to 100 for NADP+NADPH detection. The assays are robust (Z' value >0.7) and the inhibitor response curves generated using a known NAD biosynthetic pathway inhibitor FK866 correlate well with the reported data. More importantly, by multiplexing the dinucleotide detection assays with a fluorescent nonmetabolic cell viability assay, we show that dinucleotide levels can be decreased dramatically (>80%) by FK866 treatment before changes in cell viability are detected. The utility of the assays to identify modulators of intracellular nicotinamide adenine dinucleotide levels was further confirmed using an oncology active compound library, where novel dinucleotide regulating compounds were identified. For example, the histone deacetylase inhibitor entinostat was a potent inhibitor of cellular nicotinamide adenine dinucleotides, whereas the selective estrogen receptor modulator raloxifene unexpectedly caused a twofold increase in cellular nicotinamide adenine dinucleotide levels.


Asunto(s)
Mediciones Luminiscentes/métodos , NADP/antagonistas & inhibidores , NADP/análisis , Acrilamidas/análisis , Acrilamidas/farmacología , Células Hep G2 , Humanos , Células Jurkat , Mediciones Luminiscentes/normas , Oxidación-Reducción , Piperidinas/análisis , Piperidinas/farmacología
7.
PLoS One ; 8(6): e66248, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23776643

RESUMEN

In addition to their degradative role in protein turnover, proteases play a key role as positive or negative regulators of signal transduction pathways and therefore their dysregulation contributes to many disease states. Regulatory roles of proteases include their hormone-like role in triggering G protein-coupled signaling (Protease-Activated-Receptors); their role in shedding of ligands such as EGF, Notch and Fas; and their role in signaling events that lead to apoptotic cell death. Dysregulated activation of apoptosis by the caspase family of proteases has been linked to diseases such as cancer, autoimmunity and inflammation. In an effort to better understand the role of proteases in health and disease, a luciferase biosensor is described which can quantitatively report proteolytic activity in live cells and mouse models. The biosensor, hereafter referred to as GloSensor Caspase 3/7 has a robust signal to noise (50-100 fold) and dynamic range such that it can be used to screen for pharmacologically active compounds in high throughput campaigns as well as to study cell signaling in rare cell populations such as isolated cancer stem cells. The biosensor can also be used in the context of genetically engineered mouse models of human disease wherein conditional expression using the Cre/loxP technology can be implemented to investigate the role of a specific protease in living subjects. While the regulation of apoptosis by caspase's was used as an example in these studies, biosensors to study additional proteases involved in the regulation of normal and pathological cellular processes can be designed using the concepts presented herein.


Asunto(s)
Caspasas/metabolismo , Mediciones Luminiscentes/métodos , Animales , Apoptosis/fisiología , Técnicas Biosensibles , Western Blotting , Línea Celular Tumoral , Humanos , Ratones , Péptido Hidrolasas/metabolismo
8.
ACS Chem Biol ; 7(11): 1848-57, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-22894855

RESUMEN

Bioluminescence methodologies have been extraordinarily useful due to their high sensitivity, broad dynamic range, and operational simplicity. These capabilities have been realized largely through incremental adaptations of native enzymes and substrates, originating from luminous organisms of diverse evolutionary lineages. We engineered both an enzyme and substrate in combination to create a novel bioluminescence system capable of more efficient light emission with superior biochemical and physical characteristics. Using a small luciferase subunit (19 kDa) from the deep sea shrimp Oplophorus gracilirostris, we have improved luminescence expression in mammalian cells ~2.5 million-fold by merging optimization of protein structure with development of a novel imidazopyrazinone substrate (furimazine). The new luciferase, NanoLuc, produces glow-type luminescence (signal half-life >2 h) with a specific activity ~150-fold greater than that of either firefly (Photinus pyralis) or Renilla luciferases similarly configured for glow-type assays. In mammalian cells, NanoLuc shows no evidence of post-translational modifications or subcellular partitioning. The enzyme exhibits high physical stability, retaining activity with incubation up to 55 °C or in culture medium for >15 h at 37 °C. As a genetic reporter, NanoLuc may be configured for high sensitivity or for response dynamics by appending a degradation sequence to reduce intracellular accumulation. Appending a signal sequence allows NanoLuc to be exported to the culture medium, where reporter expression can be measured without cell lysis. Fusion onto other proteins allows luminescent assays of their metabolism or localization within cells. Reporter quantitation is achievable even at very low expression levels to facilitate more reliable coupling with endogenous cellular processes.


Asunto(s)
Crustáceos/enzimología , Genes Reporteros , Luciferasas/análisis , Luciferasas/genética , Ingeniería de Proteínas , Pirazinas/metabolismo , Animales , Línea Celular , Crustáceos/química , Crustáceos/genética , Crustáceos/metabolismo , Estabilidad de Enzimas , Luciérnagas/enzimología , Expresión Génica , Humanos , Luciferasas/metabolismo , Sustancias Luminiscentes/análisis , Sustancias Luminiscentes/metabolismo , Modelos Moleculares , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Renilla/enzimología , Temperatura
9.
Curr Chem Genomics ; 6: 55-71, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23248739

RESUMEN

Our fundamental understanding of proteins and their biological significance has been enhanced by genetic fusion tags, as they provide a convenient method for introducing unique properties to proteins so that they can be examinedin isolation. Commonly used tags satisfy many of the requirements for applications relating to the detection and isolation of proteins from complex samples. However, their utility at low concentration becomes compromised if the binding affinity for a detection or capture reagent is not adequate to produce a stable interaction. Here, we describe HaloTag® (HT7), a genetic fusion tag based on a modified haloalkane dehalogenase designed and engineered to overcome the limitation of affinity tags by forming a high affinity, covalent attachment to a binding ligand. HT7 and its ligand have additional desirable features. The tag is relatively small, monomeric, and structurally compatible with fusion partners, while the ligand is specific, chemically simple, and amenable to modular synthetic design. Taken together, the design features and molecular evolution of HT7 have resulted in a superior alternative to common tags for the overexpression, detection, and isolation of target proteins.

10.
ACS Chem Biol ; 6(11): 1193-7, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21932825

RESUMEN

The second messenger cAMP is a key mediator of signal transduction following activation of G-protein coupled receptors. Investigations on Gs-coupled receptors would benefit from a second messenger assay that allows continuous monitoring of kinetic changes in cAMP concentration over a broad dynamic range. To accomplish this, we have evolved a luminescent biosensor for cAMP to better encompass the physiological concentration ranges present in living cells. When compared to an immunoassay, the evolved biosensor construct was able to accurately track both the magnitude and kinetics of cAMP change using a far less labor intensive format. We demonstrate the utility of this construct to detect a broad range of receptor activity, together with showing suitability for use in high-throughput screening.


Asunto(s)
Técnicas Biosensibles/métodos , AMP Cíclico/análisis , Ensayos Analíticos de Alto Rendimiento/métodos , Mediciones Luminiscentes , AMP Cíclico/química , Células HEK293 , Humanos , Cinética , Modelos Moleculares , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Termodinámica
11.
Curr Chem Genomics ; 2: 16-28, 2008 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-20161840

RESUMEN

Proteases play important roles in a variety of disease processes. Understanding their biological functions underpins the efforts of drug discovery. We have developed a bioluminescent protease assay using a circularly permuted form of firefly luciferase, wherein the native enzyme termini were joined by a peptide containing a protease site of interest. Protease cleavage of these mutant luciferases greatly activates the enzyme, typically over 100 fold. The mutant luciferase substrates are easily generated by molecular cloning and cell-free translation reactions and thus the protease substrates do not need to be chemically synthesized or purchased. The assay has broad applicability using a variety of proteases and their cognate sites and can sensitively detect protease activity. In this report we further demonstrate its utility for the evaluation of protease recognition sequence specificity and subsequent establishment of an optimized assay for the identification and characterization of protease inhibitors using high throughput screening.

12.
ACS Chem Biol ; 3(6): 373-82, 2008 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-18533659

RESUMEN

We have designed a modular protein tagging system that allows different functionalities to be linked onto a single genetic fusion, either in solution, in living cells, or in chemically fixed cells. The protein tag (HaloTag) is a modified haloalkane dehalogenase designed to covalently bind to synthetic ligands (HaloTag ligands). The synthetic ligands comprise a chloroalkane linker attached to a variety of useful molecules, such as fluorescent dyes, affinity handles, or solid surfaces. Covalent bond formation between the protein tag and the chloroalkane linker is highly specific, occurs rapidly under physiological conditions, and is essentially irreversible. We demonstrate the utility of this system for cellular imaging and protein immobilization by analyzing multiple molecular processes associated with NF-kappaB-mediated cellular physiology, including imaging of subcellular protein translocation and capture of protein--protein and protein--DNA complexes.


Asunto(s)
Técnicas Biosensibles/métodos , Células/citología , Colorantes Fluorescentes/química , Mediciones Luminiscentes/métodos , Proteínas Luminiscentes/química , Coloración y Etiquetado , Animales , Sitios de Unión , Células/metabolismo , ADN/análisis , ADN/química , ADN/metabolismo , Enzimas Inmovilizadas , Humanos , Hidrocarburos Clorados/química , FN-kappa B/análisis , FN-kappa B/metabolismo , Proteínas/análisis , Proteínas/química , Proteínas/metabolismo , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA