Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Med Genet ; 12: 129, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21962117

RESUMEN

BACKGROUND: Oxidative stress is recognized as a major pathogenic factor of cellular damage caused by hyperglycemia. NOX/NADPH oxidases generate reactive oxygen species and NOX1, NOX2 and NOX4 isoforms are expressed in kidney and require association with subunit p22phox (encoded by the CYBA gene). Increased expression of p22phox was described in animal models of diabetic nephropathy. In the opposite direction, glutathione is one of the main endogenous antioxidants whose plasmatic concentrations were reported to be reduced in diabetes patients. The aim of the present investigation was to test whether functional single nucleotide polymorphisms (SNPs) in genes involved in the generation of NADPH-dependent O2•⁻ (-675 T → A in CYBA, unregistered) and in glutathione metabolism (-129 C → T in GCLC [rs17883901] and -65 T → C in GPX3 [rs8177412]) confer susceptibility to renal disease in type 1 diabetes patients. METHODS: 401 patients were sorted into two groups according to the presence (n = 104) or absence (n = 196) of overt diabetic nephropathy or according to glomerular filtration rate (GFR) estimated by Modification of Diet in Renal Disease (MDRD) equation: ≥ 60 mL (n = 265) or < 60 mL/min/1.73 m² (n = 136) and were genotyped. RESULTS: No differences were found in the frequency of genotypes between diabetic and non-diabetic subjects. The frequency of GFR < 60 mL/min was significantly lower in the group of patients carrying CYBA genotypes T/A+A/A (18.7%) than in the group carrying the T/T genotype (35.3%) (P = 0.0143) and the frequency of GFR < 60 mL/min was significantly higher in the group of patients carrying GCLC genotypes C/T+T/T (47.1%) than in the group carrying the C/C genotype (31.1%) (p = 0.0082). Logistic regression analysis identified the presence of at least one A allele of the CYBA SNP as an independent protection factor against decreased GFR (OR = 0.38, CI95% 0.14-0.88, p = 0.0354) and the presence of at least one T allele of the GCLC rs17883901 SNP as an independent risk factor for decreased GFR (OR = 2.40, CI95% 1.27-4.56, p = 0.0068). CONCLUSIONS: The functional SNPs CYBA -675 T → A and GCLC rs17883901, probably associated with cellular redox imbalances, modulate the risk for renal disease in the studied population of type 1 diabetes patients and require validation in additional cohorts.


Asunto(s)
Diabetes Mellitus Tipo 1/genética , Nefropatías Diabéticas/genética , Glutamato-Cisteína Ligasa/genética , Glutatión Peroxidasa/genética , NADPH Oxidasas/genética , Adulto , Estudios de Casos y Controles , Dominio Catalítico/genética , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas
2.
Gene ; 568(1): 50-4, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25965561

RESUMEN

BACKGROUND: A functional variant in the promoter region of the gene encoding tumor necrosis factor (TNF; rs1800629, -308G>A) showed to confer susceptibility to T1D. However, TNF rs1800629 was found, in several populations, to be in linkage disequilibrium with HLA susceptibility haplotypes to T1D. We evaluated the association of TNF rs1800629 with T1D in a cohort of Brazilian subjects, and assessed the impact of HLA susceptibility haplotypes in this association. METHODS: 659 subjects with T1D and 539 control subjects were genotyped for TNF-308G>A variant. HLA-DRB1 and HLA-DQB1 genes were genotyped in a subset of 313 subjects with T1D and 139 control subjects. RESULTS: Associations with T1D were observed for the A-allele of rs1800629 (OR 1.69, 95% CI 1.33-2.15, p<0.0001, in a codominant model) and for 3 HLA haplotypes: DRB1*03:01-DQB1*02:01 (OR 5.37, 95% CI 3.23-8.59, p<0.0001), DRB1*04:01-DQB1*03:02 (OR 2.95, 95% CI 1.21-7.21, p=0.01) and DRB1*04:02-DQB1*03:02 (OR 2.14, 95% CI 1.02-4.50, p=0.04). Linkage disequilibrium was observed between TNF rs1800629 and HLA-DRB1 and HLA-DQB1 alleles. In a stepwise regression analysis HLA haplotypes, but not TNF rs1800629, remained independently associated with T1D. CONCLUSION: Our results do not support an independent effect of allelic variations of TNF in the genetic susceptibility to T1D.


Asunto(s)
Diabetes Mellitus Tipo 1/genética , Cadenas beta de HLA-DQ/genética , Cadenas HLA-DRB1/genética , Factor de Necrosis Tumoral alfa/genética , Adulto , Brasil , Estudios de Casos y Controles , Femenino , Genes Dominantes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Haplotipos , Humanos , Desequilibrio de Ligamiento , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA