Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Plant J ; 117(2): 561-572, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37921015

RESUMEN

Potato (Solanum tuberosum) is a significant non-grain food crop in terms of global production. However, its yield potential might be raised by identifying means to release bottlenecks within photosynthetic metabolism, from the capture of solar energy to the synthesis of carbohydrates. Recently, engineered increases in photosynthetic rates in other crops have been directly related to increased yield - how might such increases be achieved in potato? To answer this question, we derived the photosynthetic parameters Vcmax and Jmax to calibrate a kinetic model of leaf metabolism (e-Photosynthesis) for potato. This model was then used to simulate the impact of manipulating the expression of genes and their protein products on carbon assimilation rates in silico through optimizing resource investment among 23 photosynthetic enzymes, predicting increases in photosynthetic CO2 uptake of up to 67%. However, this number of manipulations would not be practical with current technologies. Given a limited practical number of manipulations, the optimization indicated that an increase in amounts of three enzymes - Rubisco, FBP aldolase, and SBPase - would increase net assimilation. Increasing these alone to the levels predicted necessary for optimization increased photosynthetic rate by 28% in potato.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Fotosíntesis , Productos Agrícolas/metabolismo , Luz Solar , Ribulosa-Bifosfato Carboxilasa/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(31): 18869-18879, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32675233

RESUMEN

Metabolic modeling and machine learning are key components in the emerging next generation of systems and synthetic biology tools, targeting the genotype-phenotype-environment relationship. Rather than being used in isolation, it is becoming clear that their value is maximized when they are combined. However, the potential of integrating these two frameworks for omic data augmentation and integration is largely unexplored. We propose, rigorously assess, and compare machine-learning-based data integration techniques, combining gene expression profiles with computationally generated metabolic flux data to predict yeast cell growth. To this end, we create strain-specific metabolic models for 1,143 Saccharomyces cerevisiae mutants and we test 27 machine-learning methods, incorporating state-of-the-art feature selection and multiview learning approaches. We propose a multiview neural network using fluxomic and transcriptomic data, showing that the former increases the predictive accuracy of the latter and reveals functional patterns that are not directly deducible from gene expression alone. We test the proposed neural network on a further 86 strains generated in a different experiment, therefore verifying its robustness to an additional independent dataset. Finally, we show that introducing mechanistic flux features improves the predictions also for knockout strains whose genes were not modeled in the metabolic reconstruction. Our results thus demonstrate that fusing experimental cues with in silico models, based on known biochemistry, can contribute with disjoint information toward biologically informed and interpretable machine learning. Overall, this study provides tools for understanding and manipulating complex phenotypes, increasing both the prediction accuracy and the extent of discernible mechanistic biological insights.


Asunto(s)
Aprendizaje Automático , Análisis de Flujos Metabólicos/métodos , Saccharomyces cerevisiae , Biología de Sistemas/métodos , Modelos Biológicos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcriptoma
3.
Brief Bioinform ; 19(6): 1218-1235, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-28575143

RESUMEN

Metabolic modelling has entered a mature phase with dozens of methods and software implementations available to the practitioner and the theoretician. It is not easy for a modeller to be able to see the wood (or the forest) for the trees. Driven by this analogy, we here present a 'forest' of principal methods used for constraint-based modelling in systems biology. This provides a tree-based view of methods available to prospective modellers, also available in interactive version at http://modellingmetabolism.net, where it will be kept updated with new methods after the publication of the present manuscript. Our updated classification of existing methods and tools highlights the most promising in the different branches, with the aim to develop a vision of how existing methods could hybridize and become more complex. We then provide the first hands-on tutorial for multi-objective optimization of metabolic models in R. We finally discuss the implementation of multi-view machine learning approaches in poly-omic integration. Throughout this work, we demonstrate the optimization of trade-offs between multiple metabolic objectives, with a focus on omic data integration through machine learning. We anticipate that the combination of a survey, a perspective on multi-view machine learning and a step-by-step R tutorial should be of interest for both the beginner and the advanced user.


Asunto(s)
Metabolismo , Modelos Teóricos , Biología de Sistemas/métodos , Aprendizaje Automático
4.
PLoS Comput Biol ; 15(7): e1007084, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31295267

RESUMEN

Omic data analysis is steadily growing as a driver of basic and applied molecular biology research. Core to the interpretation of complex and heterogeneous biological phenotypes are computational approaches in the fields of statistics and machine learning. In parallel, constraint-based metabolic modeling has established itself as the main tool to investigate large-scale relationships between genotype, phenotype, and environment. The development and application of these methodological frameworks have occurred independently for the most part, whereas the potential of their integration for biological, biomedical, and biotechnological research is less known. Here, we describe how machine learning and constraint-based modeling can be combined, reviewing recent works at the intersection of both domains and discussing the mathematical and practical aspects involved. We overlap systematic classifications from both frameworks, making them accessible to nonexperts. Finally, we delineate potential future scenarios, propose new joint theoretical frameworks, and suggest concrete points of investigation for this joint subfield. A multiview approach merging experimental and knowledge-driven omic data through machine learning methods can incorporate key mechanistic information in an otherwise biologically-agnostic learning process.


Asunto(s)
Biología Computacional/métodos , Aprendizaje Profundo , Genoma , Aprendizaje Automático , Redes y Vías Metabólicas , Genotipo , Fenotipo
5.
PLoS Comput Biol ; 15(1): e1006714, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30699206

RESUMEN

Gut microbiota and human relationships are strictly connected to each other. What we eat reflects our body-mind connection and synchronizes with people around us. However, how this impacts on gut microbiota and, conversely, how gut bacteria influence our dietary behaviors has not been explored yet. To quantify the complex dynamics of this interplay between gut and human behaviors we explore the "gut-human behavior axis" and its evolutionary dynamics in a real-world scenario represented by the social multiplex network. We consider a dual type of similarity, homophily and gut similarity, other than psychological and unconscious biases. We analyze the dynamics of social and gut microbial communities, quantifying the impact of human behaviors on diets and gut microbial composition and, backwards, through a control mechanism. Meal timing mechanisms and "chrono-nutrition" play a crucial role in feeding behaviors, along with the quality and quantity of food intake. Considering a population of shift workers, we explore the dynamic interplay between their eating behaviors and gut microbiota, modeling the social dynamics of chrono-nutrition in a multiplex network. Our findings allow us to quantify the relation between human behaviors and gut microbiota through the methodological introduction of gut metabolic modeling and statistical estimators, able to capture their dynamic interplay. Moreover, we find that the timing of gut microbial communities is slower than social interactions and shift-working, and the impact of shift-working on the dynamics of chrono-nutrition is a fluctuation of strategies with a major propensity for defection (e.g. high-fat meals). A deeper understanding of the relation between gut microbiota and the dietary behavioral patterns, by embedding also the related social aspects, allows improving the overall knowledge about metabolic models and their implications for human health, opening the possibility to design promising social therapeutic dietary interventions.


Asunto(s)
Conducta Alimentaria/fisiología , Microbioma Gastrointestinal/fisiología , Modelos Biológicos , Conducta Social , Bacterias/metabolismo , Biomasa , Análisis por Conglomerados , Biología Computacional , Humanos , Metaboloma , Horario de Trabajo por Turnos , Factores de Tiempo
6.
Methods Mol Biol ; 2399: 87-122, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35604554

RESUMEN

Complex, distributed, and dynamic sets of clinical biomedical data are collectively referred to as multimodal clinical data. In order to accommodate the volume and heterogeneity of such diverse data types and aid in their interpretation when they are combined with a multi-scale predictive model, machine learning is a useful tool that can be wielded to deconstruct biological complexity and extract relevant outputs. Additionally, genome-scale metabolic models (GSMMs) are one of the main frameworks striving to bridge the gap between genotype and phenotype by incorporating prior biological knowledge into mechanistic models. Consequently, the utilization of GSMMs as a foundation for the integration of multi-omic data originating from different domains is a valuable pursuit towards refining predictions. In this chapter, we show how cancer multi-omic data can be analyzed via multimodal machine learning and metabolic modeling. Firstly, we focus on the merits of adopting an integrative systems biology led approach to biomedical data mining. Following this, we propose how constraint-based metabolic models can provide a stable yet adaptable foundation for the integration of multimodal data with machine learning. Finally, we provide a step-by-step tutorial for the combination of machine learning and GSMMs, which includes: (i) tissue-specific constraint-based modeling; (ii) survival analysis using time-to-event prediction for cancer; and (iii) classification and regression approaches for multimodal machine learning. The code associated with the tutorial can be found at https://github.com/Angione-Lab/Tutorials_Combining_ML_and_GSMM .


Asunto(s)
Aprendizaje Automático , Neoplasias , Minería de Datos , Genoma , Humanos , Neoplasias/genética , Biología de Sistemas
7.
STAR Protoc ; 2(4): 100837, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34632416

RESUMEN

Combining a computational framework for flux balance analysis with machine learning improves the accuracy of predicting metabolic activity across conditions, while enabling mechanistic interpretation. This protocol presents a guide to condition-specific metabolic modeling that integrates regularized flux balance analysis with machine learning approaches to extract key features from transcriptomic and fluxomic data. We demonstrate the protocol as applied to Synechococcus sp. PCC 7002; we also outline how it can be adapted to any species or community with available multi-omic data. For complete details on the use and execution of this protocol, please refer to Vijayakumar et al. (2020).


Asunto(s)
Synechococcus , Aprendizaje Automático , Synechococcus/genética , Transcriptoma
8.
iScience ; 23(12): 101818, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33354660

RESUMEN

Machine learning has recently emerged as a promising tool for inferring multi-omic relationships in biological systems. At the same time, genome-scale metabolic models (GSMMs) can be integrated with such multi-omic data to refine phenotypic predictions. In this work, we use a multi-omic machine learning pipeline to analyze a GSMM of Synechococcus sp. PCC 7002, a cyanobacterium with large potential to produce renewable biofuels. We use regularized flux balance analysis to observe flux response between conditions across photosynthesis and energy metabolism. We then incorporate principal-component analysis, k-means clustering, and LASSO regularization to reduce dimensionality and extract key cross-omic features. Our results suggest that combining metabolic modeling with machine learning elucidates mechanisms used by cyanobacteria to cope with fluctuations in light intensity and salinity that cannot be detected using transcriptomics alone. Furthermore, GSMMs introduce critical mechanistic details that improve the performance of omic-based machine learning methods.

9.
Methods Mol Biol ; 1716: 389-408, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29222764

RESUMEN

Genome-scale metabolic models are valuable tools for assessing the metabolic potential of living organisms. Being downstream of gene expression, metabolism is increasingly being used as an indicator of the phenotypic outcome for drugs and therapies. We here present a review of the principal methods used for constraint-based modelling in systems biology, and explore how the integration of multi-omic data can be used to improve phenotypic predictions of genome-scale metabolic models. We believe that the large-scale comparison of the metabolic response of an organism to different environmental conditions will be an important challenge for genome-scale models. Therefore, within the context of multi-omic methods, we describe a tutorial for multi-objective optimization using the metabolic and transcriptomics adaptation estimator (METRADE), implemented in MATLAB. METRADE uses microarray and codon usage data to model bacterial metabolic response to environmental conditions (e.g., antibiotics, temperatures, heat shock). Finally, we discuss key considerations for the integration of multi-omic networks into metabolic models, towards automatically extracting knowledge from such models.


Asunto(s)
Bacterias/genética , Redes y Vías Metabólicas , Biología de Sistemas/métodos , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Genoma Bacteriano , Aprendizaje Automático , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA