Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35163122

RESUMEN

Anti-CD133 monoclonal antibody (Ab)-conjugated poly(lactide-co-glycolide) (PLGA) nanocarriers, for the targeted delivery of oxaliplatin (OXA) and superparamagnetic nanoparticles (IO-OA) to colorectal cancer cells (CaCo-2), were designed, synthesized, characterized, and evaluated in this study. The co-encapsulation of OXA and IO-OA was achieved in two types of polymeric carriers, namely, PLGA and poly(lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) by double emulsion. PLGA_IO-OA_OXA and PEGylated PLGA_IO-OA_OXA nanoparticles displayed a comparable mean diameter of 207 ± 70 nm and 185 ± 119 nm, respectively. The concentration of the released OXA from the PEGylated PLGA_IO-OA_OXA increased very rapidly, reaching ~100% release after only 2 h, while the PLGA_IO-OA_OXA displayed a slower and sustained drug release. Therefore, for a controlled OXA release, non-PEGylated PLGA nanoparticles were more convenient. Interestingly, preservation of the superparamagnetic behavior of the IO-OA, without magnetic hysteresis all along the dissolution process, was observed. The non-PEGylated nanoparticles (PLGA_OXA, PLGA_IO-OA_OXA) were selected for the anti-CD133 Ab conjugation. The affinity of Ab-coated nanoparticles for CD133-positive cells was examined using fluorescence microscopy in CaCo-2 cells, which was followed by a viability assay.


Asunto(s)
Anticuerpos Monoclonales/química , Neoplasias Colorrectales/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Inmunoconjugados/farmacología , Nanopartículas/administración & dosificación , Oxaliplatino/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Antígeno AC133/inmunología , Antineoplásicos/química , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Portadores de Fármacos/química , Liberación de Fármacos , Humanos , Nanopartículas/química
2.
Int J Mol Sci ; 23(5)2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35269754

RESUMEN

CuxCo1-xFe2O4 (x = 0.33, 0.67, 1)-reduced graphene oxide (rGO)-thermoplastic polyurethane (TPU) nanocomposites exhibiting highly efficient electromagnetic interference (EMI) shielding were prepared by a melt-mixing approach using a microcompounder. Spinel ferrite Cu0.33Co0.67Fe2O4 (CuCoF1), Cu0.67Co0.33Fe2O4 (CuCoF2) and CuFe2O4 (CuF3) nanoparticles were synthesized using the sonochemical method. The CuCoF1 and CuCoF2 exhibited typical ferromagnetic features, whereas CuF3 displayed superparamagnetic characteristics. The maximum value of EMI total shielding effectiveness (SET) was noticed to be 42.9 dB, 46.2 dB, and 58.8 dB for CuCoF1-rGO-TPU, CuCoF2-rGO-TPU, and CuF3-rGO-TPU nanocomposites, respectively, at a thickness of 1 mm. The highly efficient EMI shielding performance was attributed to the good impedance matching, conductive, dielectric, and magnetic loss. The demonstrated nanocomposites are promising candidates for a lightweight, flexible, and highly efficient EMI shielding material.


Asunto(s)
Nanocompuestos , Nanopartículas , Óxido de Aluminio , Compuestos Férricos , Grafito , Óxido de Magnesio , Poliuretanos
3.
Nanoscale Adv ; 6(8): 2149-2165, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38633039

RESUMEN

The rapid growth, integration, and miniaturization of electronics have raised significant concerns about how to handle issues with electromagnetic interference (EMI), which has increased demand for the creation of EMI shielding materials. In order to effectively shield against electromagnetic interference (EMI), this study developed a variety of thermoplastic polyurethane (TPU)-based nanocomposites in conjunction with CoFe2O4 nanoparticles and graphite. The filler percentage and nanocomposite thickness were tuned and optimized. The designed GF15-TPU nanocomposite, which has a 5 mm thickness, 15 weight percent cobalt ferrite nanoparticles, and 35 weight percent graphite, showed the highest total EMI shielding effectiveness value of 41.5 dB in the 8.2-12.4 GHz frequency range, or 99.993% shielding efficiency, out of all the prepared polymer nanocomposites. According to experimental findings, the nanocomposite's dipole polarization, interfacial polarization, conduction loss, eddy current loss, natural resonance, exchange resonance, multiple scattering, and high attenuation significantly contribute to improving its electromagnetic interference shielding properties. The created TPU-based nanocomposites containing graphite and CoFe2O4 nanoparticles have the potential to be used in communication systems, defense, spacecraft, and aircraft as EMI shielding materials.

4.
Carbohydr Polym ; 309: 120662, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36906374

RESUMEN

Combining highly conducting one-dimensional nanostructures of polypyrrole with cellulose nanofibers (CNF) into flexible films with tailored electrical conductivity and mechanical properties presents a promising route towards the development of eco-friendly electromagnetic interference shielding devices. Herein, conducting films with a thickness of 140 µm were synthesized from polypyrrole nanotubes (PPy-NT) and CNF using two approaches, i.e., a new one-pot synthesis consisting of in situ polymerization of pyrrole in the presence of structure guiding agent and CNF, and a two-step synthesis, in which CNF and PPy-NT were physically blended. Films based on one-pot synthesis (PPy-NT/CNFin) exhibited higher conductivity than those processed by physical blending, which was further enhanced up to 14.51 S cm-1 after redoping using HCl post-treatment. PPy-NT/CNFin containing the lowest PPy-NT loading (40 wt%), thus the lowest conductivity (5.1 S cm-1), displayed the highest shielding effectiveness of -23.6 dB (>90 % attenuation), thanks to the good balance between its mechanical properties and electrical conductivity.

5.
Sci Rep ; 13(1): 19126, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37926746

RESUMEN

Smart protective coatings and devices are currently of great interest. In particular, they can absorb or reflect harmful waves of electromagnetic interference (EMI). In this work, novel binary and ternary composites with highly amorphous poly(vinyl alcohol) (HAVOH) as a matrix and single-walled carbon nanotubes (SWCNTs) and MXenes as nanofillers were prepared. HAVOH is a recently patented kind of poly(vinyl alcohol) (PVOH) that was modified with diol monomers. MXenes are a new type of inorganic two-dimensional (2D) nanoparticle consisting of carbides, nitrides and carbonitrides. Three series of composites, HAVOH/SWCNTs, HAVOH/MXenes and HAVOH/SWCNTs/MXenes, were prepared using the solvent casting method. Samples were tested with various methods to study their structure, electrical properties, thermal behavior and EMI-shielding properties. HAVOH/3.0 wt.% SWCNTs/3.0 wt.% MXene specimens revealed a shielding effectiveness of 55 dB, which is 122 times better than that of the neat matrix. These results are promising for the fabrication of films with protective effects against EMI.

6.
Materials (Basel) ; 17(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38204007

RESUMEN

Hybrid organic/inorganic conducting and magnetic composites of core-shell type have been prepared by in-situ coating of nickel microparticles with polypyrrole. Three series of syntheses have been made. In the first, pyrrole was oxidised with ammonium peroxydisulfate in water in the presence of various amounts of nickel and the composites contained up to 83 wt% of this metal. The second series used 0.1 M sulfuric acid as a reaction medium. Finally, the composites with polypyrrole nanotubes were prepared in water in the presence of structure-guiding methyl orange dye. The nanotubes have always been accompanied by the globular morphology. FTIR and Raman spectroscopies confirmed the formation of polypyrrole. The resistivity of composite powders of the order of tens to hundreds Ω cm was monitored as a function of pressure up to 10 MPa. The resistivity of composites slightly increased with increasing content of nickel. This apparent paradox is explained by the coating of nickel particles with polypyrrole, which prevents their contact and subsequent generation of metallic conducting pathways. Electrical properties were practically independent of the way of composite preparation or nickel content and were controlled by the polypyrrole phase. On the contrary, magnetic properties were determined exclusively by nickel content. The composites were used as a solid phase to prepare a magnetorheological fluid. The test showed better performance when compared with a different nickel system reported earlier.

7.
Molecules ; 17(11): 13157-74, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-23128093

RESUMEN

The effect of ionic surfactants and manufacturing methods on the separation and distribution of multi-wall carbon nanotubes (CNTs) in a silicone matrix are investigated. The CNTs are dispersed in an aqueous solution of the anionic surfactant dodecylbenzene sulfonic acid (DBSA), the cationic surfactant cetyltrimethylammonium bromide (CTAB), and in a DBSA/CTAB surfactant mixture. Four types of CNT-based composites of various concentrations from 0 to 6 vol.% are prepared by simple mechanical mixing and sonication. The morphology, electrical and thermal conductivity of the CNT-based composites are analyzed. The incorporation of both neat and modified CNTs leads to an increase in electrical and thermal conductivity. The dependence of DC conductivity versus CNT concentration shows percolation behaviour with a percolation threshold of about 2 vol.% in composites with neat CNT. The modification of CNTs by DBSA increases the percolation threshold to 4 vol.% due to the isolation/separation of individual CNTs. This, in turn, results in a significant decrease in the complex permittivity of CNT–DBSA-based composites. In contrast to the percolation behaviour of DC conductivity, the concentration dependence of thermal conductivity exhibits a linear dependence, the thermal conductivity of composites with modified CNTs being lower than that of composites with neat CNTs. All these results provide evidence that the modification of CNTs by DBSA followed by sonication allows one to produce composites with high homogeneity.


Asunto(s)
Conductividad Eléctrica , Nanocompuestos/química , Nanotubos de Carbono/química , Elastómeros de Silicona/química , Tensoactivos/química , Conductividad Térmica , Bencenosulfonatos/química , Cetrimonio , Compuestos de Cetrimonio/química , Espectroscopía Dieléctrica , Nanocompuestos/ultraestructura , Nanotubos de Carbono/ultraestructura , Sonicación , Termogravimetría
8.
Nanomaterials (Basel) ; 11(12)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34947751

RESUMEN

Magnetic hyperthermia (MH), proposed by R. K. Gilchrist in the middle of the last century as local hyperthermia, has nowadays become a recognized method for minimally invasive treatment of oncological diseases in combination with chemotherapy (ChT) and radiotherapy (RT). One type of MH is arterial embolization hyperthermia (AEH), intended for the presurgical treatment of primary inoperable and metastasized solid tumors of parenchymal organs. This method is based on hyperthermia after transcatheter arterial embolization of the tumor's vascular system with a mixture of magnetic particles and embolic agents. An important advantage of AEH lies in the double effect of embolotherapy, which blocks blood flow in the tumor, and MH, which eradicates cancer cells. Consequently, only the tumor undergoes thermal destruction. This review introduces the progress in the development of polymeric magnetic materials for application in AEH.

9.
Polymers (Basel) ; 13(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34502977

RESUMEN

In this work, rubber composites were fabricated by incorporation of manganese-zinc ferrite alone and in combination with carbon-based fillers into acrylonitrile-butadiene rubber. Electromagnetic parameters and electromagnetic interference (EMI) absorption shielding effectiveness of composite materials were examined in the frequency range 1 MHz-3 GHz. The influence of ferrite and fillers combination on thermal characteristics and mechanical properties of composites was investigated as well. The results revealed that ferrite imparts absorption shielding efficiency to the composites in tested frequency range. The absorption shielding effectiveness and absorption maxima of ferrite filled composites shifted to lower frequencies with increasing content of magnetic filler. The combination of carbon black and ferrite also resulted in the fabrication of efficient EMI shields. However, the EMI absorption shielding effectiveness was lower, which can be ascribed to higher electrical conductivity and higher permittivity of those materials. The highest conductivity and permittivity of composites filled with combination of carbon nanotubes and ferrite was responsible for the lowest absorption shielding effectiveness within the examined frequency range. The results also demonstrated that combination of ferrite with carbon-based fillers resulted in the enhancement of thermal conductivity and improvement of mechanical properties.

10.
ACS Omega ; 6(42): 28098-28118, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34723009

RESUMEN

The development of flexible, lightweight, and thin high-performance electromagnetic interference shielding materials is urgently needed for the protection of humans, the environment, and electronic devices against electromagnetic radiation. To achieve this, the spinel ferrite nanoparticles CoFe2O4 (CZ1), Co0.67Zn0.33Fe2O4 (CZ2), and Co0.33Zn0.67Fe2O4 (CZ3) were prepared by the sonochemical synthesis method. Further, these prepared spinel ferrite nanoparticles and reduced graphene oxide (rGO) were embedded in a thermoplastic polyurethane (TPU) matrix. The maximum electromagnetic interference (EMI) total shielding effectiveness (SET) values in the frequency range 8.2-12.4 GHz of these nanocomposites with a thickness of only 0.8 mm were 48.3, 61.8, and 67.8 dB for CZ1-rGO-TPU, CZ2-rGO-TPU, and CZ3-rGO-TPU, respectively. The high-performance electromagnetic interference shielding characteristics of the CZ3-rGO-TPU nanocomposite stem from dipole and interfacial polarization, conduction loss, multiple scattering, eddy current effect, natural resonance, high attenuation constant, and impedance matching. The optimized CZ3-rGO-TPU nanocomposite can be a potential candidate as a lightweight, flexible, thin, and high-performance electromagnetic interference shielding material.

11.
Nanomaterials (Basel) ; 11(5)2021 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-33923033

RESUMEN

Superparamagnetic ZnFe2O4 spinel ferrite nanoparticles were prepared by the sonochemical synthesis method at different ultra-sonication times of 25 min (ZS25), 50 min (ZS50), and 100 min (ZS100). The structural properties of ZnFe2O4 spinel ferrite nanoparticles were controlled via sonochemical synthesis time. The average crystallite size increases from 3.0 nm to 4.0 nm with a rise of sonication time from 25 min to 100 min. The change of physical properties of ZnFe2O4 nanoparticles with the increase of sonication time was observed. The prepared ZnFe2O4 nanoparticles show superparamagnetic behavior. The prepared ZnFe2O4 nanoparticles (ZS25, ZS50, and ZS100) and reduced graphene oxide (RGO) were embedded in a polyurethane resin (PUR) matrix as a shield against electromagnetic pollution. The ultra-sonication method has been used for the preparation of nanocomposites. The total shielding effectiveness (SET) value for the prepared nanocomposites was studied at a thickness of 1 mm in the range of 8.2-12.4 GHz. The high attenuation constant (α) value of the prepared ZS100-RGO-PUR nanocomposite as compared with other samples recommended high absorption of electromagnetic waves. The existence of electric-magnetic nanofillers in the resin matrix delivered the inclusive acts of magnetic loss, dielectric loss, appropriate attenuation constant, and effective impedance matching. The synergistic effect of ZnFe2O4 and RGO in the PUR matrix led to high interfacial polarization and, consequently, significant absorption of the electromagnetic waves. The outcomes and methods also assure an inventive and competent approach to develop lightweight and flexible polyurethane resin matrix-based nanocomposites, consisting of superparamagnetic zinc ferrite nanoparticles and reduced graphene oxide as a shield against electromagnetic pollution.

12.
Nanomaterials (Basel) ; 10(12)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33321997

RESUMEN

In this work, various tunable sized spinel ferrite MnFe2O4 nanoparticles (namely MF20, MF40, MF60 and MF80) with reduced graphene oxide (RGO) were embedded in a polypropylene (PP) matrix. The particle size and structural feature of magnetic filler MnFe2O4 nanoparticles were controlled by sonochemical synthesis time 20 min, 40 min, 60 min and 80 min. As a result, the electromagnetic interference shielding characteristics of developed nanocomposites MF20-RGO-PP, MF40-RGO-PP, MF60-RGO-PP and MF80-RGO-PP were also controlled by tuning of magnetic/dielectric loss. The maximum value of total shielding effectiveness (SET) was 71.3 dB for the MF80-RGO-PP nanocomposite sample with a thickness of 0.5 mm in the frequency range (8.2-12.4 GHz). This lightweight, flexible and thin nanocomposite sheet based on the appropriate size of MnFe2O4 nanoparticles with reduced graphene oxide demonstrates a high-performance advanced nanocomposite for cutting-edge electromagnetic interference shielding application.

13.
Ultrason Sonochem ; 61: 104839, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31683238

RESUMEN

Herein, we report sonochemical synthesis of MnFe2O4 spinel ferrite nanoparticles using UZ SONOPULS HD 2070 Ultrasonic homogenizer (frequency: 20 kHz and power: 70 W). The sonication time and percentage amplitude of ultrasonic power input cause appreciable changes in the structural, cation distribution and physical properties of MnFe2O4 nanoparticles. The average crystallite size of synthesized MnFe2O4 nanoparticles was increased with increase of sonication time and percentage amplitude of ultrasonic power input. The occupational formula by X-ray photoelectron spectroscopy for prepared spinel ferrite nanoparticles was (Mn0.29Fe0.42)[Mn0.71Fe1.58]O4 and (Mn0.28Fe0.54) [Mn0.72Fe1.46]O4 at sonication time 20 min and 80 min, respectively. The value of the saturation magnetization was increased from 1.9 emu/g to 52.5 emu/g with increase of sonication time 20 min to 80 min at constant 50% amplitude of ultrasonic power input, whereas, it was increased from 30.2 emu/g to 59.4 emu/g with increase of the percentage amplitude of ultrasonic power input at constant sonication time 60 min. The highest value of dielectric constant (ε') was 499 at 1 kHz for nanoparticles at sonication time 20 min, whereas, ac conductivity was 368 × 10-9 S/cm at 1 kHz for spinel ferrite nanoparticles at sonication time 20 min. The demonstrated controllable physical characteristics over sonication time and percentage amplitude of ultrasonic power input are a key step to design spinel ferrite material of desired properties for specific application. The investigation of microwave operating frequency suggest that these prepared spinel ferrite nanoparticles are potential candidate for fabrication of devices at high frequency applications.

14.
Nanomaterials (Basel) ; 9(4)2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-30995813

RESUMEN

Herein, we presented electromagnetic interference shielding characteristics of NiFe2O4 nanoparticles-in-situ thermally-reduced graphene oxide (RGO)-polypropylene nanocomposites with the variation of reduced graphene oxide content. The structural, morphological, magnetic, and electromagnetic parameters and mechanical characteristics of fabricated nanocomposites were investigated and studied in detail. The controllable composition of NiFe2O4-RGO-Polypropylene nanocomposites exhibited electromagnetic interference (EMI) shielding effectiveness (SE) with a value of 29.4 dB at a thickness of 2 mm. The enhanced EMI shielding properties of nanocomposites with the increase of RGO content could be assigned to enhanced attenuation ability, high conductivity, dipole and interfacial polarization, eddy current loss, and natural resonance. The fabricated lightweight NiFe2O4-RGO-Polypropylene nanocomposites have potential as a high performance electromagnetic interference shielding nanocomposite.

15.
ACS Omega ; 4(26): 22069-22081, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31891087

RESUMEN

In this work, nickel ferrite (NiFe2O4) nanoparticles were synthesized by dextrin from corn-mediated sol-gel combustion method and were annealed at 600, 800, and 1000 °C. The structural and physical characteristics of prepared nanoparticles were studied in detail. The average crystallite size was 20.6, 34.5, and 68.6 nm for NiFe2O4 nanoparticles annealed at 600 °C (NFD@600), 800 °C (NFD@800), and 1000 °C (NFD@1000), respectively. The electromagnetic interference shielding performance of prepared nanocomposites of NiFe2O4 nanoparticles (NFD@600 or NFD@800 or NFD@1000) in polypropylene (PP) matrix engineered with reduced graphene oxide (rGO) have been investigated; the results indicated that the prepared nanocomposites consisted of smaller-sized nickel ferrite nanoparticles exhibited excellent electromagnetic interference (EMI) shielding characteristics. The total EMI shielding effectiveness (SET) for the prepared nanocomposites have been noticed to be 45.56, 36.43, and 35.71 dB for NFD@600-rGO-PP, NFD@800-rGO-PP, and NFD@1000-rGO-PP nanocomposites, respectively, at the thickness of 2 mm in microwave X-band range (8.2-12.4 GHz). The evaluated values of specific EMI shielding effectiveness (SSE) were 38.81, 32.79, and 31.73 dB·cm3/g, and the absolute EMI shielding effectiveness (SSE/t) values were 388.1, 327.9, and 317.3 dB·cm2/g for NFD@600-rGO-PP, NFD@800-rGO-PP, and NFD@1000-rGO-PP, respectively. The prepared lightweight and flexible sheets can be considered useful nanocomposites against electromagnetic radiation pollution.

16.
Ultrason Sonochem ; 40(Pt A): 773-783, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28946484

RESUMEN

In this work, a facile and green method for gadolinium doped cobalt ferrite (CoFe2-xGdxO4; x=0.00, 0.05, 0.10, 0.15, 0.20) nanoparticles by using ultrasonic irradiation was reported. The impact of Gd3+ substitution on the structural, magnetic, dielectric and electrical properties of cobalt ferrite nanoparticles was evaluated. The sonochemically synthesized spinel ferrite nanoparticles were characterized by X-ray Diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM). X-ray diffraction (XRD) study confirmed the formation of single phase spinel ferrite of CoFe2-xGdxO4 nanoparticles. XRD results also revealed that ultrasonic irradiation seems to be favourable to achieve highly crystalline single crystal phase gadolinium doped cobalt ferrite nanoparticles without any post annealing process. Fourier Transform Infrared and Raman Spectra confirmed the formation of spinel ferrite crystal structure. X-ray photoelectron spectroscopy revealed the impact of Gd3+ substitution in CoFe2O4 nanoparticles on cation distribution at the tetrahedral and octahedral site in spinel ferrite crystal system. The electrical properties showed that the Gd3+ doped cobalt ferrite (CoFe2-xGdxO4; x=0.20) exhibit enhanced dielectric constant (277 at 100Hz) and ac conductivity (20.2×10-9S/cm at 100Hz). The modulus spectroscopy demonstrated the impact of Gd3+ substitution in cobalt ferrite nanoparticles on grain boundary relaxation time, capacitance and resistance. Magnetic property measurement revealed that the coercivity decreases with Gd3+ substitution from 234.32Oe (x=0.00) to 12.60Oe (x=0.05) and further increases from 12.60Oe (x=0.05) to 68.62Oe (x=0.20). Moreover, saturation magnetization decreases with Gd3+ substitution from 40.19emu/g (x=0.00) to 21.58emu/g (x=0.20). This work demonstrates that the grain size and cation distribution in Gd3+ doped cobalt ferrite nanoparticles synthesized by sonochemical method, is effective in controlling the structural, magnetic, and electrical properties, and can be find very promising applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA