Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(4)2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32098080

RESUMEN

A T-maze test is an experimental approach that is used in congenital research. However, the food reward-based protocol for the T-maze test in fish has low efficiency and a long training period. The aim of this study is to facilitate the T-maze conditions by using a combination of the principles of passive avoidance and a spatial memory test. In our modified T-maze settings, electric shock punishment (1-2 V, 0.3-0.5 mA) is given at the left arm, with a green cue at the right arm. Also, the depth of both arms of the T-maze was increased. The parameters measured in our T-maze design were latency, freezing time, and time spent in different areas of the T-maze. We validated the utility of our modified T-maze protocol by showing the consistent finding of memory impairment in ZnCl2-treated fish, which has been previously detected with the passive avoidance test. In addition, we also tested the spatial memory performance of leptin a (lepa) mutants which displayed an obesity phenotype. The results showed that although the learning and memory performance for lepa KO fish were similar to control fish, they displayed a higher freezing behavior during the training phase. In conclusion, we have established a modified T-maze protocol that can be used to evaluate the anxiety, learning, and memory capacity of adult zebrafish within three days, for the first time.


Asunto(s)
Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Pez Cebra/fisiología , Animales
2.
Molecules ; 25(16)2020 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-32784859

RESUMEN

Graphene and its oxide are nanomaterials considered currently to be very promising because of their great potential applications in various industries. The exceptional physiochemical properties of graphene, particularly thermal conductivity, electron mobility, high surface area, and mechanical strength, promise development of novel or enhanced technologies in industries. The diverse applications of graphene and graphene oxide (GO) include energy storage, sensors, generators, light processing, electronics, and targeted drug delivery. However, the extensive use and exposure to graphene and GO might pose a great threat to living organisms and ultimately to human health. The toxicity data of graphene and GO is still insufficient to point out its side effects to different living organisms. Their accumulation in the aquatic environment might create complex problems in aquatic food chains and aquatic habitats leading to debilitating health effects in humans. The potential toxic effects of graphene and GO are not fully understood. However, they have been reported to cause agglomeration, long-term persistence, and toxic effects penetrating cell membrane and interacting with cellular components. In this review paper, we have primarily focused on the toxic effects of graphene and GO caused on aquatic invertebrates and fish (cell line and organisms). Here, we aim to point out the current understanding and knowledge gaps of graphene and GO toxicity.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Grafito/toxicidad , Nanoestructuras/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Grafito/química , Nanoestructuras/química , Contaminantes Químicos del Agua/química
3.
Molecules ; 25(14)2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32664325

RESUMEN

The noteworthy intensification in the development of nanotechnology has led to the development of various types of nanoparticles. The diverse applications of these nanoparticles make them desirable candidate for areas such as drug delivery, coasmetics, medicine, electronics, and contrast agents for magnetic resonance imaging (MRI) and so on. Iron oxide magnetic nanoparticles are a branch of nanoparticles which is specifically being considered as a contrast agent for MRI as well as targeted drug delivery vehicles, angiogenic therapy and chemotherapy as small size gives them advantage to travel intravascular or intracavity actively for drug delivery. Besides the mentioned advantages, the toxicity of the iron oxide magnetic nanoparticles is still less explored. For in vivo applications magnetic nanoparticles should be nontoxic and compatible with the body fluids. These particles tend to degrade in the body hence there is a need to understand the toxicity of the particles as whole and degraded products interacting within the body. Some nanoparticles have demonstrated toxic effects such inflammation, ulceration, and decreases in growth rate, decline in viability and triggering of neurobehavioral alterations in plants and cell lines as well as in animal models. The cause of nanoparticles' toxicity is attributed to their specific characteristics of great surface to volume ratio, chemical composition, size, and dosage, retention in body, immunogenicity, organ specific toxicity, breakdown and elimination from the body. In the current review paper, we aim to sum up the current knowledge on the toxic effects of different magnetic nanoparticles on cell lines, marine organisms and rodents. We believe that the comprehensive data can provide significant study parameters and recent developments in the field. Thereafter, collecting profound knowledge on the background of the subject matter, will contribute to drive research in this field in a new sustainable direction.


Asunto(s)
Compuestos Férricos/toxicidad , Nanopartículas de Magnetita/toxicidad , Animales , Sistemas de Liberación de Medicamentos/efectos adversos , Humanos , Imagen por Resonancia Magnética/métodos , Tamaño de la Partícula
4.
Mol Biol Rep ; 46(4): 4151-4160, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31102149

RESUMEN

AMP-activated protein kinase (AMPK) is an intracellular energy sensor important in metabolic regulation, cell growth, and survival. However, the specific role of AMPK signaling pathway in the inhibition of angiogenesis remains unclear. The study highlights the activity on AMP activated protein kinase signaling pathways of a marine algae, Gracilaria coronopifolia, and its effects on angiogenesis. It was found that the most potent extract, GCD, inhibited angiogenesis significantly in the duck chorioallantoic membrane assay and also activated the enzyme AMP-kinase, in vitro. The dichloromethane extract was found most active in inhibiting angiogenesis in the duck chorioallantoic membrane (IC50 = 1.21 µg/mL) followed by GCH (IC50 = 3.08 µg/mL) (p = 0.479) and GCM (IC50 = 8.93 µg/mL) (p = 0.042). Benferroni post hoc analysis revealed that there was no significant difference between the percent inhibitions of GCH and GCM extracts (p = 0.479). Consequently, angiogenic inhibition caused lowering of iron, zinc, and copper levels in the duck CAM. Thin layer chromatography and gas chromatography-mass spectrometry revealed the components of each extracts. Notably, this is the first report on the kinase activity of a red algae G. coronopifolia extracts and a colorimetric-based quantification of angiogenesis based on metal content of CAM. Our data also suggest a novel therapeutic approach for inhibiting angiogenesis through the AMPK pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Gracilaria/metabolismo , Neovascularización Fisiológica/fisiología , Proteínas Quinasas Activadas por AMP/fisiología , Inhibidores de la Angiogénesis/metabolismo , Animales , Membrana Corioalantoides/efectos de los fármacos , Cobre/análisis , Cobre/metabolismo , Patos/embriología , Hierro/análisis , Hierro/metabolismo , Óvulo , Extractos Vegetales/farmacología , Rhodophyta/metabolismo , Transducción de Señal/efectos de los fármacos , Zinc/análisis , Zinc/metabolismo
6.
J Vet Sci ; 25(2): e33, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38568834

RESUMEN

Agricultural production is a major driver of the Philippine economy. Mass production of animal products, such as livestock and poultry farming, is one of the most prominent players in the field. Filipino farmers use veterinary medicinal products (VMPs) when raising agricultural animals to improve animal growth and prevent diseases. Unfortunately, the extensive use of VMPs, particularly antibiotics, has been linked to drug resistance in animals, particularly antibiotics. Antimicrobial gene products produced in animals due to the prolonged use of VMPs can passed on to humans when they consume animal products. This paper reviews information on the use of VMPs in the Philippines, including the regulations, their impact, challenges, and potential recommendations. The Philippines has existing legislation regulating VMP use. Several agencies were tasked to regulate the use of VMPs, such as the Department of Agriculture, the Department of Health, and the Philippine National Action Plan. Unfortunately, there is a challenge to implementing these regulations, which affects consumers. The unregulated use of VMPs influences the transmission of antibiotic residues from animals to crops to humans. This challenge should be addressed, with more focus on stricter regulation.


Asunto(s)
Aves de Corral , Drogas Veterinarias , Animales , Humanos , Filipinas , Antibacterianos/uso terapéutico , Drogas Veterinarias/uso terapéutico
7.
Toxics ; 11(3)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36977051

RESUMEN

Concentrations of heavy metals (HMs) were assessed in Tilapia spp. from selected communities in Calapan City, Philippines. Eleven (11) inland farmed tilapia samples were collected and analyzed for HMs concentration using X-ray fluorescence (XRF). The 11 fish samples were cut into seven pieces, according to the fish body parts, constituting a total of 77 samples. These fish samples were then labeled as bone, fins, head, meat, skin, and viscera. Results showed that the mean concentration of Cd in all parts of tilapia exceeded the Food and Agriculture Organization/World Health Organization (FAO/WHO) limits. The highest concentration was recorded in the fins, which was sevenfold higher than the limit. The trend of the mean concentration of Cd in different parts of tilapia was fins > viscera > skin > tail > head > meat > bone. The target hazard quotient (THQ) recorded a value less than 1. This means that the population exposed to tilapia, within the area where fish samples originated, were not at risk to non-carcinogens. The concentrations of Cu, Pb, Mn, Hg, and Zn in different parts, particularly in skin, fins, and viscera, also exceeded the FAO/WHO limits. The calculated cancer risk (CR) in consuming the fish skin, meat, fins, bone, viscera, and head was higher than the USEPA limit. This indicated a possible carcinogenic risk when consumed regularly. Most of the correlations observed between HMs in various parts of the tilapia had positive (direct) relationships, which were attributed to the HM toxicity target organ characteristics. Results of the principal component analysis (PCA) showed that most of the dominating HMs recorded in tilapia were attributable to anthropogenic activities and natural weathering within the watershed of agricultural areas. The agriculture area comprises about 86.83% of the overall land area of Calapan City. The identified carcinogenic risks were associated with Cd. Therefore, regular monitoring of HMs in inland fishes, their habitat, and surface water quality shall be carried out. This information is useful in creating strategies in metals concentration monitoring, health risks reduction program, and relevant guidelines that would reduce the accumulation of HM in fish.

8.
Asian Biomed (Res Rev News) ; 17(6): 273-280, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38161350

RESUMEN

Background: Several species of the gut microbiota have been implicated in colorectal cancer (CRC) development. The anaerobic bacterium enterotoxigenic Bacteroides fragilis (ETBF), has been identified to produce fragilysin, a toxin known to cleave E-cadherin, thereby leading to carcinogenesis. Objective: To determine the antibody response of CRC patients against ETBF to ascertain whether significant difference exists or whether antibody response is related to tumor grade and tumor stage. Methods: Informed consent was obtained from histologically confirmed CRC casesand their age- and sex-matched clinically healthy controls. Plasma samples from the participants were subjected to in-house enzyme-linked immunosorbent assay (ELISA) to determine their antibody levels. Results: Using ETBF total protein as coating antigen, 38/39 (97%) CRC cases and 36/39 (92%) controls showed anti-ETBF IgG above cut-off, while all (100%) CRC cases and 36/39 (92%) controls had anti-ETBF IgA levels above cut-off. With culture broth as coating antigen, all (100%) CRC cases and 37/39 (95%) controls had anti-ETBF IgG levels above cut-off. For anti-ETBF IgA, all (100%) cases and controls had levels above cut-off. Statistical analysis reveals no significant difference (P > 0.05) on the number of CRC cases and controls with IgG and IgA antibody levels above cut-off value. Also, there's no significant difference (P > 0.05) in the mean anti-ETBF antibody levels of cases who were at different tumor grade (well differentiated and moderately and poorly differentiated) and tumor stage (early and advanced). Conclusions: These results suggest that Filipino CRC cases and their clinically healthy matched controls exhibit antibody responses against ETBF.

9.
ACS Omega ; 8(6): 5377-5392, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36816691

RESUMEN

Pathologic hyperreactive inflammatory responses occur when there is excessive activation of a proinflammatory NF-κB pathway and a reduced cytoprotective NRF2 cascade. The noncytotoxic, highly selective COX-2 inhibitory flavonol-enriched butanol fraction (UaB) from Uvaria alba (U. alba) was investigated for its inflammatory modulating potential by targeting NF-κB activation and NRF2 activity. Enzyme-linked immunosorbent assay was initially performed to measure levels of proinflammatory mediators [nitric oxide (NO), prostaglandin E2, and reactive oxygen species (ROS)] and cytokines [tumor necrosis factor-alpha (TNF-α), IL-1ß, and IL-6], followed by reverse transcription-polymerase chain reaction and western blotting to determine mRNA and protein expression, respectively. Using immunofluorescence staining combined with western blot analysis, the activation of NF-κB was further investigated. NRF2 activity was also measured using a luciferase reporter assay. UaB abrogated protein and mRNA expressions of inducible nitric oxide synthase (iNOS), COX-2, TNF-α, IL-1ß, and IL-6 in RAW 264.7 macrophages, thereby suppressing the production of proinflammatory mediators and cytokines. This was further validated when a concentration-dependent decrease in NO and ROS production was observed in zebrafish (Danio rerio) larvae. UaB also increased NRF2 activity in HaCaT/ARE cell line and attenuated NF-κB activation by inhibiting the nuclear translocation of transcription factor p65 in RAW 264.7 macrophages. Nontargeted LC-MS analysis of UaB revealed the presence of the flavonols quercitrin (1), quercetin (2), rutin (3), kaempferol (4), and kaempferol 3-O-rutinoside (5). Molecular docking indicates that major flavonol aglycones have high affinity toward COX-2 NSAID-binding sites, TNF-α, and TNF-α converting enzyme, while the glycosylated flavonoids showed strong binding toward iNOS and IKK-all possessing dynamic stability when performing molecular dynamics simulations at 140 ns. This is the first report to have elucidated the mechanistic anti-inflammatory potential of the Philippine endemic plant U. alba.

10.
Protein Expr Purif ; 81(1): 18-24, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21911064

RESUMEN

The interaction between the synaptic adhesion molecules neuroligins and neurexins is essential for connecting the pre- and post-synaptic neurons, modulating neuronal signal transmission, and facilitating neuronal axogenesis. Here, we describe the simultaneous expression of the extracellular domain of rat neuroligin-1 (NL1) proteins along with the enhanced green fluorescent protein (EGFP) using the bi-cistronic baculovirus expression vector system (bi-BEVS). Recombinant rat NL1 protein, fused with signal sequence derived from human Azurocidin gene (AzSP), was secreted into the culture medium and the optimum harvest time for NL1 protein before the lysis of infected cells was determined through the release of cytosolic EGFP. The NL1 protein (0.129±0.013 mg/8×10(7) High Five cells; ~96% purity by metal affinity chromatography) was obtained from the supernatant of the recombinant virus-infected insect cells. A novel chip was employed to address whether the recombinant NL1 is functional in axogenesis. The purified rat NL1 promoted and enhanced the growth rate (137.07±9.74 µm/day) of the axon on NL1/PLL (poly-L-lysine)-coated fine lines on the chip compared to those lines that were coated with PLL alone (105.53±4.53 µm/day). These results were confirmed by fluorescence immunocytochemistry and demonstrated that the recombinant protein can be purified by a one-step process using IMAC combined with monitoring of cell lysis by bi-BEVS. This technique along with our novel chip offers a simple, cost-effective and useful platform for understanding the roles of NL1 protein in neuronal regeneration and synaptic formation studies.


Asunto(s)
Baculoviridae/genética , Moléculas de Adhesión Celular Neuronal/biosíntesis , Proteínas Recombinantes de Fusión/biosíntesis , Animales , Axones/efectos de los fármacos , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/aislamiento & purificación , Moléculas de Adhesión Celular Neuronal/farmacología , Línea Celular , Cromatografía de Afinidad , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Mariposas Nocturnas , Neuronas , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/farmacología
11.
Heliyon ; 8(11): e11829, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36458294

RESUMEN

Background: Leptospirosis, a common zoonotic infection in developing countries, usually progresses to severe conditions and poor outcomes when not detected early. Microscopic agglutination test (MAT) and culture are available but are not accessible in all areas and are usually confined to specialized laboratories. There are several available immunochromatographic test kits (ICT) that offer ease of use, access, and affordability, but diagnostic accuracy is not yet well established. In this paper, we aim to review published literature on the use of ICTs for the detection of leptospirosis and evaluate their diagnostic efficiency. Materials and methods: We systematically searched multiple databases (PubMed, Cochrane Library, and Google Scholar), including gray literature sources for published research articles as of April 13, 2022, on the diagnosis of acute leptospirosis using ICT. We assessed the methodological quality of each article using the revised QUADAS-2. Results: From a total of 41 articles, 30 (73.2%) were identified as potentially relevant after reviewing the title and abstract and eliminating duplicate articles; then, 22 (53.7%) articles were included after scrutinizing and applying the inclusion/exclusion criteria to the full text. Almost all test kits detect IgM antibodies against the Leptospira species except for one which used IgG as a marker for diagnosis of acute leptospirosis. A wide range of sensitivity (15.8%-100.0%) and specificity (37.3%-100.0%) were recorded. Lipopolysaccharide (LPS)-specific Immunochromatographic Lateral Flow Assay presented the highest sensitivity (∼93-100%) and specificity (∼99.19-100%). Conclusion: Rapid diagnosis of acute leptospirosis is highly warranted; however, available test kits present a wide range of diagnostic accuracy. We found that LPS-specific ICT kit has the highest diagnostic efficiency; however, our analysis was limited by the included studies' heterogeneity in design and reporting; thus, we recommend standardization in the conduct and reporting of diagnostic accuracy of test kits as it is vital to evaluate the reliability of the test kit.

12.
Biosci Biotechnol Biochem ; 75(7): 1342-8, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21737931

RESUMEN

A bi-cistronic baculovirus-insect/larval system containing a polyhedron promoter, an internal ribosome entry site (IRES), and an egfp gene was developed as a cost-effective platform for the production of recombinant human interferon gamma (rhIFN-γ). There was no significant difference between the amounts of rhIFN-γ produced in the baculovirus-infected Spodoptera frugiferda 21 cells grown in serum-free medium and the serum-supplemented medium, while the Trichoplusia ni (T. ni) and Spodoptera exigua (S. exigua) larvae afforded rhIFN-γ amounting to 1.08±0.04 and 9.74±0.35 µg/mg protein respectively. The presence of non-glycosylated and glycosylated rhIFN-γ was confirmed by immunoblot and lectin blot. The immunological activity of purified rhIFN-γ, with 96% purity by Nickel (II)-nitrilotriacetic acid (Ni-NTA) affinity chromatography, was similar to that commercially available. Moreover, the rhIFN-γ protein from T. ni had more potent antiviral activity. These findings suggest that this IRES-based expression system is a simple and inexpensive alternative for large-scale protein production in anti-viral research.


Asunto(s)
Baculoviridae/genética , Interferón gamma/biosíntesis , Ribosomas/genética , Spodoptera/metabolismo , Spodoptera/virología , Animales , Línea Celular , Cromatografía de Afinidad , Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Larva/genética , Larva/virología , Biosíntesis de Proteínas , Spodoptera/genética
13.
ACS Omega ; 6(38): 24382-24396, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34604621

RESUMEN

The phenolic natural product magnolol exhibits neuroprotective properties through ß-amyloid toxicity in PC-12 cells and ameliorative effects against cognitive deficits in a TgCRND8 transgenic mice model. Its bioavailability and blood-brain barrier crossing ability have been significantly improved using the metal-organic framework (MOF) UiO-66(Zr) as a drug delivery system (DDS). To investigate the neuroprotective effects of the Zr-based DDS, magnolol and magnolol-loaded-UiO-66(Zr) (Mag@UiO-66(Zr)) were evaluated for inhibitory activity against ß-secretase and AlCl3-induced neurotoxicity. Due to the moderate inhibition observed for magnolol in vitro, in silico binding studies were explored against ß-secretase along with 11 enzymes known to affect Alzheimer's disease (AD). Favorable binding energies against CDK2, CKD5, MARK, and phosphodiesterase 3B (PDE3B) and dynamically stable complexes were noted through molecular docking and molecular dynamic simulation experiments, respectively. The magnolol-loaded DDS UiO-66(Zr) also showed enhanced neuroprotective activity against two pathological indices, namely, neutrophil infiltration and apoptotic neurons, in addition to damage reversal compared to magnolol. Thus, MOFs are promising drug delivery platforms for poorly bioavailable drugs.

14.
Transl Vis Sci Technol ; 10(4): 2, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34003979

RESUMEN

Purpose: The purpose of this study was to evaluate the intraocular pressure (IOP) reduction efficiency of hyaluronic acid-chitosan-latanoprost link nanoparticle (HA-CS-latanoprost link NP) formulated eye drops. Methods: The IOP reduction study was performed in 24 normotensive albino rabbits. The test animals were randomized and grouped accordingly to treatment namely, HA-CS-latanoprost link NP, plain latanoprost, and the commercially available Xalatan eye drop, all were formulated with 0.005% latanoprost. The 9 days of the experiment were divided into baseline period (days 1-2), treatment period (days 3-6), and recovery period (days 7-9). A wireless noncontact tonometer was used to measure IOP at a time interval of 2 hours for 12 hours per day with 5 readings each. Results: The highest mean daily IOP reduction during the treatment period was 24% for plain latanoprost, 23% for Xalatan, and 29% for HA-CS-latanoprost link NP. The maximum reduction in IOP for plain latanoprost and Xalatan all occurred at the sixth hour with the peak effects of 4.85 mm Hg (37%) and 4.8 mm Hg (36%), respectively. Although HA-CS-latanoprost link NP had peak effects of 5.75 mm Hg (43%) at the sixth hour and 5.22 mm Hg (39%) at the eighth hour. Daily mean IOP measurements of each treatment group showed that HA-CS-latanoprost link NP has a greater IOP reduction effect compared with the other two treatments (P < 0.001). Conclusions: The results showed that the formulation of latanoprost with CS and HA is more effective in reducing the IOP than by drug alone. Translational Relevance: The results provide evidence from animal experiment that HA-CS-latanoprost link NP formulation could improve and sustain drug concentration in the anterior segment of the eye. The improved reduction in IOP with that HA-CS-latanoprost link NP formulation can serve as a basis that latanoprost eye drops can be formulated with decreased concentration of benzalkonium HCl, an irritant preservative and penetration enhancer.


Asunto(s)
Quitosano , Nanopartículas , Prostaglandinas F Sintéticas , Animales , Antihipertensivos/uso terapéutico , Sistemas de Liberación de Medicamentos , Ácido Hialurónico , Presión Intraocular , Latanoprost , Soluciones Oftálmicas , Conejos
15.
Artículo en Inglés | MEDLINE | ID: mdl-32605096

RESUMEN

The available arable land is unable to fulfill the food production need of rapidly the exponentially growing human population in the world. Pesticides are one of those different measures taken to meet this demand. As a plant growth regulator to block gibberellin, paclobutrazol (PBZ) is used excessively throughout the world to promote early fruit setting, and to increase seed setting which might be harmful because PBZ is a very stable compound; therefore, it can bioaccumulate into the food chain of an ecosystem. In the present study, we discovered unexpected effects of PBZ on zebrafish larvae and adult behaviors by challenging them with low dose exposure. Zebrafish larvae aged 4 days post-fertilization (dpf) were exposed for 24 h at 10 µg/L (0.01 ppm) and 100 µg/L (0.1 ppm) of PBZ, respectively, and adults were incubated at 100 µg/L (0.1 ppm) and 1000 µg/L (1 ppm) concentrations of PBZ, respectively, for fourteen days. After incubation, the locomotor activity, burst, and rotation movement for the larvae; and multiple behavioral tests such as novel tank exploration, mirror biting, shoaling, predator avoidance, and social interaction for adult zebrafish were evaluated. Brain tissues of the adult fish were dissected and subjected to biochemical analyses of the antioxidant response, oxidative stress, superoxide dismutase (SOD), and neurotransmitter levels. Zebrafish larvae exposed to PBZ exhibited locomotion hyperactivity with a high burst movement and swimming pattern. In adult zebrafish, PBZ resulted in anxiolytic exploratory behavior, while no significant results were found in social interaction, shoal making, and predator avoidance behaviors. Interestingly, high dose PBZ exposure significantly compromised the innate aggressive behavior of the adult fish. Biochemical assays for oxidative stress, antioxidant response, and superoxide dismutase (SOD) showed significant reductions in their relative contents. In conclusion, for the first time, our behavior assays revealed that chronic PBZ exposure induced behavioral alterations in both larvae and the adult zebrafish. Because PBZ is a widely-used plant growth regulator, we suggest that it is necessary to conduct more thorough tests for its biosafety and bioaccumulation.


Asunto(s)
Ansiolíticos , Conducta Exploratoria/efectos de los fármacos , Pez Cebra , Animales , Ansiolíticos/toxicidad , Conducta Animal , Ecosistema , Larva/efectos de los fármacos , Locomoción , Actividad Motora , Triazoles
16.
Biomolecules ; 10(9)2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32962160

RESUMEN

Donepezil (DPZ) is an acetylcholinesterase inhibitor used for the clinical treatment of mild cognitive impairment. However, DPZ has been reported to have adverse effects, including causing abnormal cardiac rhythm, insomnia, vomiting, and muscle cramps. However, the existence of these effects in subjects without Dementia is unknown. In this study, we use zebrafish to conduct a deeper analysis of the potential adverse effects of DPZ on the short-term memory and behaviors of normal zebrafish by performing multiple behavioral and biochemical assays. Adult zebrafish were exposed to 1 ppm and 2.5 ppm of DPZ. From the results, DPZ caused a slight improvement in the short-term memory of zebrafish and induced significant elevation in aggressiveness, while the novel tank and shoaling tests revealed anxiolytic-like behavior to be caused by DPZ. Furthermore, zebrafish circadian locomotor activity displayed a higher reduction of locomotion and abnormal movement orientation in both low- and high-dose groups, compared to the control group. Biomarker assays revealed that these alterations were associated with an elevation of oxytocin and a reduction of cortisol levels in the brain. Moreover, the significant increases in reactive oxygen species (ROS) and malondialdehyde (MDA) levels in muscle tissue suggest DPZ exposure induced muscle tissue oxidative stress and muscle weakness, which may underlie the locomotor activity impairment. In conclusion, we show, for the first time, that chronic waterborne exposure to DPZ can severely induce adverse effects on normal zebrafish in a dose-dependent manner. These unexpected adverse effects on behavioral alteration should be carefully addressed in future studies considering DPZ conducted on zebrafish or other animals.


Asunto(s)
Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Donepezilo/toxicidad , Exposición a Riesgos Ambientales/efectos adversos , Pruebas de Toxicidad Crónica/métodos , Pez Cebra/fisiología , Animales , Encéfalo/metabolismo , Inhibidores de la Colinesterasa/toxicidad , Locomoción/efectos de los fármacos , Locomoción/fisiología , Malondialdehído/metabolismo , Memoria a Corto Plazo/efectos de los fármacos , Memoria a Corto Plazo/fisiología , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Músculos/efectos de los fármacos , Músculos/metabolismo , Músculos/fisiología , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
17.
Genes (Basel) ; 11(11)2020 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-33171840

RESUMEN

DNA methylation plays several roles in regulating neuronal proliferation, differentiation, and physiological functions. The major de novo methyltransferase, DNMT3, controls the DNA methylation pattern in neurons according to environmental stimulations and behavioral regulations. Previous studies demonstrated that knockout of Dnmt3 induced mouse anxiety; however, controversial results showed that activation of Dnmt3 causes anxiolytic behavior. Thus, an alternative animal model to clarify Dnmt3 on modulating behavior is crucial. Therefore, we aimed to establish a zebrafish (Danio rerio) model to clarify the function of dnmt3 on fish behavior by behavioral endpoint analyses. We evaluated the behaviors of the wild type, dnmt3aa, and dnmt3ab knockout (KO) fish by the novel tank, mirror biting, predator avoidance, social interaction, shoaling, circadian rhythm locomotor activity, color preference, and short-term memory tests. The results indicated that the dnmt3aa KO fish possessed abnormal exploratory behaviors and less fear response to the predator. On the other hand, dnmt3ab KO fish displayed less aggression, fear response to the predator, and interests to interact with their conspecifics, loosen shoaling formation, and dysregulated color preference index ranking. Furthermore, both knockout fishes showed higher locomotion activity during the night cycle, which is a sign of anxiety. However, changes in some neurotransmitter levels were observed in the mutant fishes. Lastly, whole-genome DNA methylation sequencing demonstrates a potential network of Dnmt3a proteins that is responsive to behavioral alterations. To sum up, the results suggested that the dnmt3aa KO or dnmt3ab KO fish display anxiety symptoms, which supported the idea that Dnmt3 modulates the function involved in emotional control, social interaction, and cognition.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Animales , Ansiedad/genética , Control de la Conducta/métodos , Conducta Animal/fisiología , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , ADN Metiltransferasa 3A , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Modelos Animales de Enfermedad , Femenino , Masculino , Modelos Animales , Neurotransmisores , Pez Cebra/genética , Proteínas de Pez Cebra/genética
18.
Pharmaceutics ; 12(5)2020 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-32397364

RESUMEN

Bioavailability plays an important role in drug activity in the human body, as certain drug amounts should be present to elicit activity. However, low bioavailability of drugs leads to negligible use for human benefit. In this study, the diversely active neolignan, magnolol, was impregnated onto a Zr-based organometallic framework [Uio-66(Zr)] to increase its low bioavailability (4-5%) and to test its potential acute oral toxicity. Synthesis of Uio-66(Zr) was done through the solvothermal method while simple impregnation at different time points was used to incorporate magnolol. The loading capacity of Uio-66(Zr) at 36 h was found to be significantly higher at 72.16 ± 2.15% magnolol than in other incubation time. Based on the OECD 425 (limit test), toxicity was not observed at 2000 mg kg-1 dose of mag@Uio-66(Zr) in female Sprague Dawley rats. The area under the curve (AUC) at 0-720 min of mag@Uio-66(Zr) was significantly higher than the AUC of free magnolol. Moreover, relative bioavailability increased almost two-folds using Uio-66(Zr). Unconjugated magnolol was found in the liver, kidney, and brain of rats in all treatment groups. Collectively, Uio-66(Zr) provided a higher magnolol bioavailability when used as drug carrier. Thus, utilization of Uio-66(Zr) as drug carrier is of importance for maximal use for poorly soluble and lowly bioavailable drugs.

19.
Animals (Basel) ; 10(6)2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32630437

RESUMEN

Ultraviolet B (UVB) radiation has drawn more attention over these past few decades since it causes severe DNA damage and induces inflammatory response. Serial gene profiling and high throughput data in UVB-associated phenomenon in human cultured cells or full rack of human skin have been investigated. However, results using different tissue models lead to ambiguity in UVB-induced pathways. In order to systematically understand the UVB-associated reactions, the zebrafish model was used, and whole organism gene profiling was performed to identify a novel biomarker which can be used to generate a new mechanistic approach for further screening on a UVB-related system biology. In this study, detailed morphological assays were performed to address biological response after receiving UVB irradiation at morphological, cellular, and molecular levels. Microarray screening and whole genome profiling revealed that there is an early onset expression of junbb in zebrafish embryos after UVB irradiation. Also, the identified novel biomarker junbb is more sensitive to UVB response than mmps which have been used in mouse models. Moreover, cellular and molecular response chronology after UVB irradiation in zebrafish provide a solid and fundamental mechanism for use in a UV radiation-associated study in the future.

20.
Nat Prod Res ; 34(4): 525-529, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30427208

RESUMEN

The methanolic extract of Callyspongia samarensis (MCS) significantly inhibited ß-secretase 1 (IC50 99.82 µg/mL) in a dose-dependent manner and demonstrated a noncompetitive type of inhibition. Furthermore, it exhibited the highest AMPK activation (EC50 14.47 µg/mL) as compared with the standard, Aspirin (EC50 >100 µg/mL). HPLC/ESI-MS analysis of MCS extract revealed 15 peaks, in which nine peaks demonstrated similar fragmentation pattern with the known compounds in literature and in database library: 5-aminopentanoic acid (1), 4-aminobutanoic acid (3), Luotonin A (4), (E)-3-(1H-imidazol-5-yl) prop-2-enoic acid (8), Galactosphingosine (10), D-sphingosine (11), 5,7,4'-trihydroxy-3',5'-dimethoxyflavone (12), hydroxydihydrovolide (13), and 3,5-dibromo-4-methoxyphenylpyruvic acid (14); and 6 peaks are not identified (2, 5-7, 9, and 15). Acute oral toxicity test of MCS extract revealed that it is nontoxic, with an LD50 of >2000 mg/kg. Assessment of BBB permeability of MCS extract showed that compound 15 was able to cross the BBB making it a suitable candidate for developing CNS drugs.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Callyspongia/química , Animales , Barrera Hematoencefálica/metabolismo , Cromatografía Líquida de Alta Presión , Metanol , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA