Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Photochem Photobiol Sci ; 19(5): 620-630, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32248218

RESUMEN

Hypericin (Hyp) is considered a promising photosensitizer for Photodynamic Therapy (PDT), due to its high hydrophobicity, affinity for cell membranes, low toxicity and high photooxidation activity. In this study, Hyp photophysical properties and photodynamic activity against melanoma B16-F10 cells were optimized using DPPC liposomes (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) as a drug delivery system. This nanoparticle is used as a cell membrane biomimetic model and solubilizes hydrophobic drugs. Hyp oxygen singlet lifetime (τ) in DPPC was approximately two-fold larger than that in P-123 micelles (Pluronic™ surfactants), reflecting a more hydrophobic environment provided by the DPPC liposome. On the other hand, singlet oxygen quantum yield values (ΦΔ1O2) in DPPC and P-123 were similar; Hyp molecules were preserved as monomers. The Hyp/DPPC liposome aqueous dispersion was stable during fluorescence emission and the liposome diameter remained stable for at least five days at 30 °C. However, the liposomes collapsed after the lyophilization/rehydration process, which was resolved by adding the lyoprotectant Trehalose to the liposome dispersion before lyophilization. Cell viability of the Hyp/DPPC formulation was assessed against healthy HaCat cells and high-metastatic melanoma B16-F10 cells. Hyp incorporated into the DPPC carrier presented a higher selectivity index than the Hyp sample previously solubilized in ethanol under the illumination effect. Moreover, the IC50 was lower for Hyp in DPPC than for Hyp pre-solubilized in ethanol. These results indicate the potential of the formulation of Hyp/DPPC for future biomedical applications in PDT treatment.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/análogos & derivados , Antineoplásicos/farmacología , Melanoma/tratamiento farmacológico , Perileno/análogos & derivados , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , 1,2-Dipalmitoilfosfatidilcolina/química , Antracenos , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Composición de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Estabilidad de Medicamentos , Humanos , Hypericum/química , Liposomas/química , Melanoma/patología , Estructura Molecular , Perileno/síntesis química , Perileno/química , Perileno/farmacología , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Células Tumorales Cultivadas
2.
Photochem Photobiol Sci ; 18(2): 487-494, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30534717

RESUMEN

Chagas is a parasitic endemic disease caused by the protozoan Trypanosoma cruzi. It represents a strong threat to public health due to its strong resistance against commonly available drugs. We studied the in vitro ability to inactivate the trypomastigote form of this parasite using photodynamic inactivation of microorganisms (or antimicrobial Photodynamic Therapy, aPDT). For this, we chose to use the photosensitizer hypericin (Hyp) formulated in ethanol/water (1% v/v) and Hyp loaded in the dispersion of different aqueous nanocarrier systems. These included polymeric micelles of F-127 and P-123 (both Pluronic™ surfactants), and liposomal vesicles of phospholipid 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). These systems with Hyp had their activity compared against trypomastigote forms under light and in the dark. Hyp revealed a high level of effectiveness to eradicate protozoa in vitro. Samples at concentrations higher than 0.8 µmol L-1 of Hyp in Pluronic micelles showed efficacy even in the dark, with the EC50 around (6-8) µmol L-1. Therefore, Hyp/Pluronics can be used also as a chemotherapeutic agent. The best result for EC50 is at approximately 0.31 µmol L-1 for illuminated systems of Hyp in F-127 micelles. For Hyp in P-123 micelles under light, the results also led to a low EC50 value of 0.36 µmol L-1. The highest value of EC50 was 2.22 µmol L-1, which was found for Hyp/DPPC liposomes under light. For the Hyp-free (ethanol/water, 1% v/v)/illuminated group, the EC50 value was 0.37 µmol L-1, which also is a value that shows effectiveness. However, in free-form, Hyp is not protected against blood components, unlike when Hyp is loaded into the nanocarriers.


Asunto(s)
Portadores de Fármacos/química , Nanoestructuras/química , Perileno/análogos & derivados , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/efectos de la radiación , Antracenos , Micelas , Perileno/química , Perileno/farmacología , Poloxámero/análogos & derivados , Poloxámero/química
3.
Materials (Basel) ; 17(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38930397

RESUMEN

Modified clays with organic molecules have many applications, such as the adsorption of pollutants, catalysts, and drug delivery systems. Different methodologies for intercalating these structures with organic moieties can be found in the literature with many purposes. In this paper, a new methodology of modifying Sodium Montmorillonite clays (Na-Mt) with a faster drying time was investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), BET, and thermogravimetric analysis (TG and DTG). In the modification process, a mixture of ethyl alcohol, DMSO, and Na-Mt were kept under magnetic stirring for one hour. Statistical analysis was applied to evaluate the effects of the amount of DMSO, temperature, and sonication time on the modified clay (DMSO-SMAT) using a 23-factorial design. XRD and FTIR analyses showed the DMSO intercalation into sodium montmorillonite Argel-T (SMAT). An average increase of 0.57 nm for the interplanar distance was found after swelling with DMSO intercalation. BET analysis revealed a decrease in the surface area (from 41.8933 m2/g to 2.1572 m2/g) of Na-Mt when modified with DMSO. The porosity increased from 1.74 (SMAT) to 1.87 nm (DMSO-SMAT) after the application of the methodology. Thermal analysis showed a thermal stability for the DMSO-SMAT material, and this was used to calculate the DMSO-SMAT formula of Na[Al5Mg]Si12O30(OH)6 · 0.54 DMSO. Statistical analysis showed that only the effect of the amount of DMSO was significant for increasing the interlayer space of DMSO-SMAT. In addition, at room temperature, the drying time of the sample using this methodology was 30 min.

4.
Polymers (Basel) ; 14(21)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36365477

RESUMEN

In this study, we developed a bioadhesive emulsion-filled gel containing a high amount of Copaifera reticulata Ducke oil-resin as a veterinary or human clinical proposal. The phytotherapeutic system had easy preparation, low cost, satisfactory healing ability, and fly repellency, making it a cost-effective clinical strategy for wound care and myiasis prevention. Mechanical, rheological, morphological, and physical stability assessments were performed. The results highlight the crosslinked nature of the gelling agent, with three-dimensional channel networks stabilizing the Copaifera reticulata Ducke oil-resin (CrD-Ore). The emulgel presented antimicrobial activity, satisfactory adhesion, hardness, cohesiveness, and viscosity profiles, ensuring the easy spreading of the formulation. Considering dermatological application, the oscillatory responses showed a viscoelastic performance that ensures emulgel retention at the action site, reducing the dosage frequencies. In Vivo evaluations were performed using a case report to treat ulcerative skin wounds aggravated by myiasis in calves and heifers, which demonstrated healing, anti-inflammatory, and repellent performance for the emulsion-filled gel. The emulgel preparation, which is low in cost, shows promise as a drug for wound therapy.

5.
Photochem Photobiol ; 91(3): 518-25, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25644689

RESUMEN

Aluminum Chloride Phthalocyanine (AlPcCl) can be used as a photosensitizer (PS) for Photodynamic Inactivation of Microorganisms (PDI). The AlPcCl showed favorable characteristics for PDI due to high quantum yield of singlet oxygen (ΦΔ ) and photostability. Physicochemical properties and photodynamic inactivation of AlPcCl incorporated in polymeric micelles of tri-block copolymer (P-123 and F-127) against microorganisms Staphylococcus aureus, Escherichia coli and Candida albicans were investigated in this work. Previously, it was observed that the AlPcCl undergoes self-aggregation in F-127, while in P-123 the PS is in a monomeric form suitable for PDI. Due to the self-aggregation of AlPcCl in F-127, this formulation did not show any effect on these microorganisms. On the other hand, AlPcCl formulated in P-123 was effective against S. aureus and C. albicans and the death of microorganisms was dependent on the PS concentration and illumination time. Additionally, it was found that the values of PS concentration and illumination time to eradicate 90% of the initial population of microorganisms (IC90 and D90 , respectively) were small for the AlPcCl in P-123, showing the effectiveness of this formulation for PDI.


Asunto(s)
Candida albicans/efectos de los fármacos , Indoles/química , Micelas , Viabilidad Microbiana/efectos de los fármacos , Compuestos Organometálicos/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Poloxámero/análogos & derivados , Poloxámero/química , Staphylococcus aureus/efectos de los fármacos , Cloruro de Aluminio , Luz , Fármacos Fotosensibilizantes/efectos de la radiación , Poloxámero/farmacología , Staphylococcus aureus/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA